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4 Abstract  

Chronic non-healing ulcers depict a growing concern considering the soaring incidences 

especially in diabetes. These diabetic wounds are leading to infections and in some cases to 

amputation and elicit huge costs for the health care system. New treatment methods are 

needed to promote faster wound closure and avoid complications. 

Our working group was able to show in previous studies by Mildner et al. and Hacker et al. that 

the topical application of supernatant of peripheral blood mononuclear cells (PBMCs) cultured 

for 24 hours on wound areas lead to accelerated wound healing. We assumed, that this tissue-

regenerative effect originates from a plethora of cytokines released by the PBMCs. Thus, we 

tried to elucidate the role of the secretome of different PBMC subtypes on angiogenesis, which 

is crucial for successful wound healing. Furthermore, we wanted to investigate the role of 

apoptosis and necroptosis on the secretion pattern. 

In this thesis we could show, that the pro-angiogenic capacity (tested in aortic ring assays) 

was highest for the secretome of PBMCs cultured together, compared to the secretome of 

mono-cultures of PBMC subsets (monocytes, T-cells, B-cells and natural killer cells). This 

implicates possible cell-cell-interactions leading to changes in the supernatant composition.  

Moreover, we could reveal that ionizing irradiation of PBMCs prior to cultivation induced not 

only apoptosis, but also necroptosis. Interestingly tumor necrosis factor-receptor superfamily 

member 1B acted as main inductor of necroptosis after irradiation. We could further 

demonstrate that necroptosis boosts the capacity of PBMC secretome to improve tissue 

regeneration by enhanced angiogenesis.   

As a next step towards clinical use, we could demonstrate in a clinical phase I study, that the 

application of the autologous supernatant of PBMC exposed to ionizing irradiation (produced 

according to Good Manufacturing Practice (GMP) on dermal wounds is safe and well tolerated. 

These results may pave the way for future treatment options of chronic wounds and thus 

alleviate disease burden.  
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5 Zusammenfassung 

Chronische, nicht heilende Wunden stellen ein zunehmendes Problem in der klinischen Praxis 

dar, insbesondere mit der steigenden Inzidenz von Patienten mit Diabetes. Diabetische 

Wunden führen oft zu Infektionen und im schwersten Fall bis hin zu Amputationen, was zu 

hohen Kosten für das Gesundheitssystem führt. Behandlungsmöglichkeiten zur schnelleren 

Wundheilung fehlen nach wie vor, um diese Belastungen und Komplikationen effektiv zu 

verringern.  

Unsere Arbeitsgruppe konnte zeigen, dass die Applikation des Überstandes von 

mononukleären Zellen des peripheren Blutes zu einer deutlich schnelleren Wundheilung in 

murinen und porzinen Modellen führte. Als Ursache für den verbesserten Wundverschluss 

vermuteten wir den parakrinen Effekt der Vielzahl an ausgeschütteten Zytokinen und 

Wachstumsfaktoren im Zellüberstand. Der genaue Wirkmechanismus, der verbesserten 

Angiogenese ist noch zu entschlüsseln und Gegenstand dieser Dissertation. Das Sekretom 

der T-Zellen, B-Zellen, Natürlichen Killer-Zellen und Monozyten, aus denen sich die PBMC 

zusammensetzen wurden daher in in-vitro Aorten-Ring Experimenten auf ihr angiogenetisches 

Potential untersucht.  

Überraschenderweise zeigte sich, dass die Kultivierung aller PBMC gemeinsam den 

deutlichsten, positiven Effekt auf die Angiogenese hatten, während die Monokulturen von 

Natürlichen Killerzellen, T- und B-Zellen und Monozyten einen deutlich kleineren Effekt im 

Hinblick auf die Angiogenese zeigten. Dies lässt auf einen mögliche Zell-Zell-Interaktionen, die 

die Zytokin-Produktion und vor allem Zusammensetzung beeinflussen, schließen.   

Zudem konnten wir in bisherigen Studien zeigen, dass die Bestrahlung der PBMC mit 

ionisierender Strahlung sowohl Apoptose, als auch Nekroptose auslösen kann. In dieser 

Dissertation fanden wir heraus, dass die Art des Zellniedergangs via Apoptose und Nekroptose 

die Gefäßaussprossung durch die veränderte Proteinsignatur der ausgeschütteten Zytokine 

maßgeblich beeinflusst.  

Identifiziert wurde neben der Apoptose, vor allem die Nekroptose als wichtiger Faktor der 

vermehrten Gefäßaussprossung. Durch Rezeptor-Inhibierung des Tumornekrosefaktor-

Rezeptor 1B (TNFR1B) konnten wir die Nekroptose-Induktion erfolgreich verhindern. Somit 

konnten wir auch den verantwortlichen Signalweg der Nekroptose-Entstehung nach 

bestrahlung identifizieren.  

Damit diese Erkenntnisse in Zukunft als mögliches, neues Therapiekonzept Patienten zur 

Verfügung gestellt werden kann, muss das Sekretom der bestrahlten PBMC (APOSEC) 
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zunächst auf ihre Sicherheit in der menschlichen Anwendung getestet werden. Hierfür führten 

wir eine Klinische Phase I Studie durch, welche die sichere Anwendung des modifizierten, 

GMP-konform hergestellten, autologen APOSEC demonstrierte. Wir hoffen, dass diese Arbeit 

den Weg für geplante Phase II und III Studien ebnet und in Zukunft eine verbesserte 

Patientenversorgung ermöglicht.  
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8 CHAPTER ONE: Introduction 

 

8.1  Structure of the human skin 

 

The skin is the body’s largest organ with a surface area of nearly 1,8m2 (depending on 

individual size of the human body).1 The skin can be separated in two main layers, the 

epidermis and the dermis, which are located on the hypodermis (a subcutaneous fascial layer, 

connecting the dermis to deeper muscular tissue or periosteum).2 The structure of the skin 

displays its complexity. 

The epidermis consists of four to five layers of mostly keratinocytes, subdivided in stratum 

corneum, stratum granulosum, stratum spinosum and stratum basale (stratum lucidum is only 

present in thicker parts of the skin).2 The thickness of the epidermis depends on the distinct 

part of the body and ranges from 1,4mm to 0,8mm (e.g. plantar parts are thicker than palmar 

skin).2 Furthermore hair follicles and the corresponding muscles (arrector pili muscles), as well 

as sebaceous- and sweat glands can be found in the epidermis.2 Apart from the majority of 

keratinocytes different cells such as melanocytes, dendritic cells (Langerhans cells) and 

Merkel cells (especially important for the tactile sensation) are essential parts of the skin.2 

Melanocytes generate melanin and aggregate them in melanosomes, which are presented on 

dendritic processes and consumed by keratinocytes via phagocytosis and therefore reach the 

upper layers of skin within the keratinocytes.2 The phagosomes release the melanin into the 

cytoplasm, where melanin granules protect the cell from DNA damage via ultraviolet-

irradiation.2  Merkel cells are mechanoreceptors and are specialized on light tactile sensation 

and are located near afferent, unmyelinated sensory plates.2 Langerhans cells  derive from 

monocytes of the bone marrow and fulfill the role of macrophages, such as recognition, 

processing and antigen presentation to naive T-cells.3 Due to its role of antigen processing 

Langerhans cells are especially important in autoimmunity, if autoantigens are presented to T-

cells and therefore may lead to contact allergic responses.3  

The dermis connects epidermis to hypodermis and sustains the epidermis with nutrients and 

is characterized by a strong fibroelastic tissue and extracellular matrix.2 The dermis consists 

of a papillary and reticular layer.2 Recent proteomic analysis showed the composition is a mix 

of different types of collagens (I, II, III, VI, XII and XIV), defining its flexibility or cohesiveness.4,5 
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The papillary part is an assembly of thin collagen fibers (mostly collagen I), whereas the 

reticular part displays a stronger and denser collagen composition (primarily collagen type 

III).4,5 The avascular epidermis draws its nutrients from looped capillaries in the papillary layer.2 

These capillaries embedded in loose elastic fibers also contribute to temperature regulation of 

the body.2 Moreover also here mechanoreceptors called the Meissner corpuscles can be 

found, which transport tactile stimuli to the nerval system.2  Beside cells of the connective 

tissue this layer is populated with a variety of sweat- and sebaceous glands, pressure-

recognizing  mechanoreceptors known as Pacinian corpuscles, hair follicles and its vascular- 

and lymphatic-system.2 Furthermore for stretching sensation Ruffini corpuscles, sensory 

innervation and muscles (eminently for facial expression) are incorporated.2 A high amount of 

arteriovenous shunts in the capillary system and thus vascular tone control of the dermis allows 

a precise thermoregulation of the skin, necessary to adapt to temperature changes, due to 

exercise or environmental exposure.2  

Below the reticular layer of the dermis lies a subcutaneous tissue consisting of loose 

connective properties which transforms into adipose tissue.2 This subcutaneous tissue of the 

hypodermis is highly vascularized with a widespread capillary system, responsible for the 

excellent absorption of drugs or medication applied via injection.2  Also the lymphatic system 

is highly developed in the hypodermis.2  

These layers form a barrier and protect the human body bidirectionally from fluid or protein 

loss and on the other hand from intrusion of infections, toxic environmental factors or ultraviolet 

irradiation.2  

For a long time the role of skin as barrier to environmental jeopardies, such as a multitude of 

bacterial and viral infections, was seen as its sole function, yet the skin represents the largest 

immunological organ of the body.6 Moreover skin fulfills various essential functions as the 

regulation of temperature (e.g. by sweating)5 and is involved in the nervous system regulation 

for danger signaling and fluid regulation.5  

 

8.2  Cutaneous wound healing 

 

Wound healing depicts a myriad of complex processes of different cell types and interactions 

between the immunologic- and vascular- system, skin and tissue.7 To accomplish an adequate  

healing process a variety of cytokines, chemokines, transportation of nutrients to the site of 

damage with a sufficient blood supply and matrix proteins are necessary.7-10  
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A physiological wound healing starts with hemostasis and activated thrombocytes, which are 

found at the wounded area to a high amount.8,11 Due to aggregation of these thrombocytes 

and haemostasis a stable fibrin clot is formed, stopping the blood loss and closing the 

endothelial defect.8 These thrombocytes secrete various different vasoactive and proliferative 

proteins such as tansforming growth factor β (TGF-β), platelet derived-, fibroblast-, and 

epidermal growth factor (PDGF, FGF, EGF), prostaglandins, histamine and bradykinin.8,12 

Mast cells and basophils also play an important role in the histamine production, and are 

enhanced by complement activation, which in turn is activated by platelets.8,12 The secreted 

vasoactive proteins lead to initial vasoconstriction in the damaged area, further stopping blood 

loss.8,12 

 

The inflammatory phase starts as soon, as the blood clotting is completed and serves as 

eradication step of antimicrobial pathogens and foreign objects in the wounded area.8,13 To 

fulfill this purpose vasodilation of blood vessels is activated to increase the vascular 

permeability and transportation of inflammatory cells and peripheral blood mononuclear cells 

(PBMC) to the damaged area.8,13 In this regard, especially neutrophils, monocytes and 

macrophages need to be mentioned as main players in this phase.8,13 Neutrophils act as first 

defense line after wounding by eradicating bacteria via secretion (degranulation) of toxic 

proteases and enzymes and effectively destroying pathogens via phagocytosis and dissolving 

them in their phagosome.14 Moreover neutrophils produce free oxygen radicals and lysosomal 

enzymes to create an acidic, bactericidal environment, to decrease the risk of wound 

infections.12,14 Furthermore neutrophils are able to form NETs (Neutrophil extracellular traps) 

via release of euchromatic DNA, which captures bacteria with its adhesive extracellular 

structure, spiked with antibacterial proteins.15 Whereas the NET formation is important for the 

hindrance of severe infections, it can also lead to hyperergic inflammation (second burn) by 

chemoattracting further pro-inflammatory immune cells to the site, leading to excess 

inflammation and furthermore exaggerated NET formation, which leads to serious tissue 

damage.15  

Monocytes differentiate into two forms of macrophages: the responsive and the inflammatory 

macrophage.12 First pro-inflammatory macrophages (M1) are mostly present in the first stages 

of wound healing.16 In later stages of wound repair a shift to anti-inflammatory macrophages 

(M2) takes place and is associated with more efficient wound closure, especially in subjects 

with diabetes.16 Macrophages digest cell debris via phagocytosis, yet a crucial factor of wound 

healing is their secretion of cytokines and growth factors: e.g. tumor necrosis factors (TNF, 

especially TNF-α), PDGF, interleukins (IL) and TGF-β.12 The secretion of numerous pro-

inflammatory cytokines such as TNF-α or IL-6 is executed by M1-type macrophages and is 
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important for first wound cleansing, whereas pro-angiogenic factors as VEGF-α and anti-

inflammatory factors (e.g. IL-10) or TGF-β is more associated to M2-type macrophages.16,17  

 

In the proliferative phase these growth factors are leading to tissue proliferation, fibroblast 

collagen production and promotion of endothelial cells to drive angiogenesis in the granulation 

tissue to form a vascular nutrient supply for better wound healing.7-10  Fibroblasts are the key 

players in this phase and appear at around day two or three after injury.8 Special myofibroblasts 

lead to constriction of the wounded area and remodeling of the scar tissue.18 

Another effect of the increased capillary permeability is the transport of proteins from the blood 

vessels to the wounded tissue and thus fibroblasts to migrate into the damaged tissue area, 

attracted by chemotactic substances secreted by extracellular matrix (particularly produced by 

fibronectin and hyaluronate).12 Fibronectin receptors on fibroblasts act as an scaffold and 

enable cells to migrate, by binding to actin filaments.12 The activated fibroblasts synthesize 

collagen and proteoglycans, which is further enhanced by EGF and TGF-β secreted by 

macrophages.12   

 

Angiogenesis in the destroyed area is necessary for adequate blood supply and starts with the 

migration of endothelial cells, which form capillary networks under the influence of FGF and 

TGF-β.12 If angiogenesis is inhibited, wound healing fails and fibroblasts cannot migrate, which 

is the pathogenensis of arteriolosclerosis obliterans or other forms of ischemic ulcers.8 The 

regulation of angiogenesis also depends on the oxygen level in the surrounding tissue, while 

hypoxia drives angiogenesis, higher levels of oxygen can stop neo-angiogensis.8,12    

 

This reduction of neo-angiogenesis is characteristic for the maturation phase and can be seen 

macroscopically as a less hyperemic scar.12 In the maturation phase reorganization of collagen 

fibres to increase strength and reform the structure of normal skin is the main goal.8 It should 

be mentioned, that scar tissue will never demonstrate an exact replica of normal skin with all 

its complex structures, yet can resemble it, to a certain amount.8  

In the maturation phase the collagen type III present in new wounds is converted into the more 

mature collagen type I form, yet the conversion of collagen in wounds can be a process lasting 

for up to two years.12,19  The scar formation varies between individuals according to their age, 

wound location, pathogenesis of the wound and duration of inflammation (especially when it 

comes to wound infections).8 Re-epithelialization is an attribute of successful wound healing.8 

 

If these delicately orchestrated processes fail, inadequate wound healing with all concomitant 

negative effects take place.20  Insufficient wound healing, especially in patients suffering from 

diabetes, may lead to infections, osteomyelitis and even amputation.21  
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One factor that may prevent physiological wound healing in chronic non-healing ulcers is 

increased colonization of bacteria and fungi of the skin.20 This may lead to a constant pro-

inflammatory signal, which is important in the first phases of wound healing, yet inhibits the 

later remodeling phases.8,13,22  

Another reason for deficient wound healing is an error in angiogenesis, which generates a lack 

of nutrient transport, necessary cell migration and less oxygen supply in the damaged area.23   

Moreover a dysfunctional immune system or deranged cytokine environment inhibits the shift 

from the pro-inflammatory to the anti-inflammatory phase, necessary for adequate collagen re-

organization and scar-formation.18 In wound healing neutrophils act as first responders and 

eradicators of bacteria, due to cytokine stimulation e.g. via IL-8.18 These neutrophils are 

phagocytised by macrophages at the transition point to the anti-inflammatory phase.18 If this 

phagocytosis never occurs, the ongoing pro-inflammatory process prevents remodelling of the 

extracellular matrix.18  

 

Chronic non-healing wounds are a rising challenge on an individual level, as pain, disability to 

work and the quality of life is compromised, on the other hand on a socioeconomic level, as 

around 2,4 to 4,5 million patients in the United States alone are facing this problem.24-26 The 

costs for wound treatment products is estimated to reach 25 billion $ annually.24-27 Seeing 

these numbers, searching for successful treatment options seems to be an investment into the 

future and are necessary to accomplish better outcomes to this unmet need.27 

 

The role of cytokines and growth factors (paracrine or endocrine) as drivers of fibroblast 

activation, collagen production and secretion of chemoattractants in wound healing 

demonstrates its importance for the regenerative research branch with promising results as 

potential therapeutic targets.8,12,19,28,29 

 

8.3 Tissue regeneration concepts using 
cell therapy  

At sites of damage, trauma and cell death, inflammation and healing are essential for the 

survival of multicellular organisms.30 To support the body's capacities to overcome these 

malfunction is the aim of regenerative medicine.  

Regenerative medicine, aims to restore damaged or malfunctioning tissue. 30 It has become a 

globally emerging branch in different research fields in the last century.30 Despite striking 
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advances in treatment regimens for organ failure, surgical interventions and solid organ 

transplantation, regeneration and restoration of injured organs, in particularly the myocardium, 

kidney, peripheral and central nervous system, lung and skin still remains a tremendous 

problem.31  

In this thesis we will focus on the developmental steps of cell-based regenerative medicine 

and its origin in the research area of myocardial infarction and its adaptation for wound healing 

as for both the angiogenic potential is of crucial importance.32-35 

Cell based therapies fulfill various concepts of function, for example as substitute of damaged 

or destroyed cells.36  

One of the success-stories of regenerative medicine are solid organ transplantations. Yet the 

transplant patients have to face constant immunosuppression, as the immune system is 

recognizing the exogenous tissue.37 Even under adequate immunosuppressive medication for 

years the transplanted organs are facing terminal organ failure at some point of its life-span 

and re-transplantation must be performed, if possible.37,38  

Yet the dream to transplant single cells, which differentiate into the needed tissue and fully 

compensate its functions remains. Mesenchymal stem cells (MSCs) appeared to be the ideal 

substance for regenerative medicine.39 Due to their ability to differentiate in various other cell 

types (among others: cardiomyocytes, myocytes, osteoblasts, chrondrocytes and 

adipocytes).39-42 MSCs can be obtained by isolation from adipose tissue after plastic surgery, 

umbilical cord tissue of newborns or aspirated from bone marrow.41  

The idea of cell-based therapies as surrogate was highly investigated in relation to myocardial 

infarction, as  a source of regeneration of once damaged cells due to hypoxia.43 The beginning 

of cell based therapy was set as the finding that certain cells are capable of developing cardiac-

like myocytes.44,45 As an attempt autologous myoblasts from the rat tibialis anterior muscle 

were transplanted in a rodent model after induction of myocardial infarction.46 Surprisingly the 

left ventricular ejection fraction elevated in the group with the transplanted myoblasts.46 These 

experiments were implemented in humans via catheter-based injection of myoblasts from the 

quadriceps muscle.47 Yet after promising results, the fact was revealed that the transferred  

muscle cells could not function as cardiac myocytes, lacking the contractile rhythm needed to 

be a real surrogate.48 The reason for the mild beneficial outcome of patients remained a secret. 

In wound healing the addition of MSCs lead to enhancement of re-epithelialization.49,50 Felanga 

et al was able to show, that the addition of MSCs in fibrin spray on dermal wounds lead to 

accelerated wound closure.50 Moreover Wu et al. demonstrated, that MSC application in a 

murine model lead to a faster wound closure by differentiation and ameliorated angiogenesis.51 
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The mode of action behind the increased cutaneous wound closure seems to be explained by 

neovascularization and angiogenesis growing into the non-vascular fibroblast scaffold built 

during wound healing.52 Endothelial progenitor cells derived from bone marrow played an 

important role in vessel formation in the adult organism.53,54 

Neovascularization can be induced by two miscellaneous mechanisms: improvement of 

sprouting of available resident endothelial cells (angiogenesis) or the migration of endothelial 

progenitor cells (EPCs) derived from bone marrow to build new vessels (vasculogenesis).55 In 

diseases with ischemia and inadequate vascularization such as myocardial infarction, 

peripheral artery disease, stroke and impaired wound repair the positive effect of transplanted 

EPCs could be revealed.32-35 Yet the exact mode of action of this effect on ameliorated 

vascularization remained concealed, as similar to the MSCs also the EPCs could not 

differentiate into functioning vessels.  

Holzinger et al. isolated peripheral blood mononuclear cells (PBMCs) of heparinized blood 

from patients with non-healing wounds and dripped it on their chronic ulcers.56 As a result the 

mean healing time was reduced to 4,6 weeks in the group treated with PBMC, compared to 

8,1 weeks in the control group.56 Holzinger et al. could show this in a try and error concept.56 

Yet the hypothesis behind the successful improvement of the ulcers was not revealed for a 

long time.   

Insufficient wound repair was the consequence of a lack of nutrients and oxygen, as well as 

the inadequate proliferation of keratinocytes.8,12,13,56 But even more important is the fact, that 

without inflammatory cells there is no sufficient wound healing.8,12,13,56 In patients with chronic 

ulcers the transport of pro-inflammatory cytokines and nutrients to the wounded area, due to 

ischemia was the reason for the deranged healing process.8,12,13,56 The lack of chemo attractant 

gradients as well as reduced migration of leukocytes was caused by insufficient blood 

sustenance.8,12,13,56 Secreted pro-inflammatory factors by leukocytes seemed to make a 

difference.8,12,13,56   
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Fig. 1. Time of wound healing after treatment with PBMC (mononuclear cells MNC) 56,57 shown in the table is the 
time needed for wound closure ith and without the use of peripheral blood mononuclear cells 
(MNC) in all chronic wounds, patients with chronic arterial occlusive disease (CAOD) and post-
thrombotic syndrome (PTS).56,57  

 

Also, other researchers treated ulcers by addition of immune cells. Danon et al applied 

macrophages on wounds of elderly patients, to improve the healing capacity.58 He could depict 

wound closure in 27% of treated patients compared to 6% in the control group.58 Danon 

hypothesized, that the secretory pattern of activated monocytes and macrophages lead to 

ameliorated angiogenesis, cell migration and collagen production.59 He even developed a 

method to further enhance their secretion capacity by hypo-osmotic shock.59 

8.3.1 From cell based to cell free-therapy 

Gnecchi was a pioneer to assume, not only the direct cell-cell interaction being the source for 

the tissue regeneration, but the secretome, released by the cells acting via paracrine 

mechanisms.60 

What is the secretome of cells? The secretome in in vitro experiments is defined as the 

conditioned medium of stimulated or unstimulated cells.61 It consists of a complex plethora of 

lipids, extracellular vesicles, apoptotic bodies, cytokines, chemokines, other proteins, micro 

ribonucleic acids (miRNAs) and carrier cargo with small non-coding RNAs secreted by the cells 

into the medium, during cultivation.61-63  

Over time more and more researchers drew the same deduction:  

In the study of Javazon et al. stromal cells from progenitor cells purified from bone marrow 

improved neovascularization and re-epithelialization in a dermal wound model, compared to 

bone marrow alone in a murine model. 64 What was rather suprising, that the GFP-marked 

stromal cells could not be found in the granulation tissue or endothelial cells, allowing the 

conclusion, that the result was not reached by transdifferentiation.64 
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Another cause for the assumption, was the fact, that only 2% of injected stem cells were 

reaching the heart in a myocardial infarction model, and therefore could not be solely 

responsible for the beneficial regenerative effects.65 Moreover intracoronary stem cell injection 

in some cases resulted in blood flow reductions, with the pathogenesis of mesenchymal stem 

cells obstructing small vessels leading to extension of ischemic myocardium.66  

Manon Desgres et al. tested extracellular vesicles derived from cardiac progenitor cells in 

doxorubicin induced cardiomyopathy as model for chemotherapy-induced cardiotoxicity. 67 He 

could reveal that intraperitoneal injection of the extracellular vesicles in a rodent model 

ameliorates circumferential cardiac strain and preserved systolic and diastolic volumes in rats. 

67 

The importance of paracrine effects of bone marrow derived stem cells was further enhanced 

by the study of Uemura et al., in which preconditioning in culture resulted in less apoptotic 

cardiomyocytes after myocardial infarction.68 The regenerative potential of ischemic tissue was 

not only limited to myocardium, but could be verified for limb ischemia either.69 In rats the 

application of conditioned medium of mesenchymal stem cells increased proliferation of 

smooth muscle cells as well as endothelial cells.69 These findings were not solely created by 

the impact of single cytokines, such as the well-known vascular endothelial growth factor 

(VEGF) or basic fibroblast growth factor (bFGF) found in the conditioned medium, as it was 

revealed by anti-body blocking experiments.69 In these experiment the impact of VEGF and 

bFGF was abolished by antibody binding, yet the results remained the same with enhanced 

cell proliferation.69  

Growth factors also seemed to play an important role in dermatological wound healing. In a 

gangrenous wound of an elderly, diabetic individual, the wound was treated with a mixture of 

PBMC and added basic fibroblast growth factor.70 This lead to wound closure within six months 

without further ulceration in the follow-up controls.70  
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Fig.  2. Developmental stages of stem cell therapy through the example of cardiac insufficiency. Adapted 
from Silvestre et al. 71 The hope of early studies was a differentiation of bone marrow (BM), 
adipose tissue (AT) or peripheral blood (PB) derived stem cells (SC) to differentiate into active 
myocardial muscle cells, via electrical stimulation. The next step  was to use cardiac stem cells 
and finally to culture and trasnplant induced pluripotent stem cells (iPSCs) or embryonic stem 
cells ESCs.71 Yet even this approach was abolished as the cells did not reach their goal after 
intravenous application or failed to proliferate and transform into myocardial muscle.71 
Astonishingly a beneficial effect was detected and even potentiated by administration of the 
supernatant of the stem cells, leading the studies into a different direction with cytokines and 
chemokines as the key players in damage repair.71 

 

It became more and more clear, that not the applied cells were responsible for the beneficiary 

wound healing effect, but the growth factors, chemokines or cytokines secreted by the cells. 

This evolution of cell based to cell-free regenerative medicine was verified by Walter et al.72 

He proved, that the conditioned medium of MSCs derived from bone marrow accelerated 

dermal wound healing in a scratch assay.72 In this study keratinocytes and fibroblasts were co-

cultured with the supernatant of MSCs and the growth was significantly enhanced.72 

Intriguingly not the proliferation was the predominant mode of action for the wound healing, 

yet the enhanced cell migration, driven by cytokines as RANTES, MCP-1, IL-8, IL-6 and TGF-

β.72 
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It was further speculated that micro vesicles present in the conditioned media were responsible 

for the regenerative effect after kidney ischemia.73 To test this hypothesis micro vesicles 

gathered from mesenchymal stem cell culture media were injected intravenously after 

ischemia–reperfusion injury and acted cytoprotective (apoptosis prevention) and enhanced 

proliferation of tubular epithelial cells.73  

These findings let us hope to find a potential drug that combine cytoprotective and pro-

angiogenic effects. Yet the answer which player in the secretome (cytokines or micro-vesicles 

or the combination) is the most potent remains to be elucidated. 

8.3.2 Preconditioning of cell-therapy 

To further maximize the positive effect of the cell secretomes and utilizing the cell as bioreactor 

was the next step in the secretome research field.74 A common approach to achieve this goal 

is hypoxia, as dermal wounds often display lower oxygen levels.74 Zhang et al showed, that 

mesenchymal stem cells derived from umbilical cords secreted exosomes after exposure to 

hypoxia.74 These exosomes enhanced endothelial migration and proliferation.74 Furthermore 

apoptosis induction of endothelial cells was diminished compared to stimulation with normoxic 

secretome of MSC.74 As probable mode of action the microRNA-125b, which is transported in 

exosomes could be identified. MicroRNA-125b inhibited apoptosis via reduction of tumor 

protein p53 inducible nuclear protein 1-expression.74  

Another study accomplished faster wound healing in a murine wound model by pre-stimulation 

of MSCs with TNF-α and IFN-γ.75 This pre-stimulation led to induced angiogenesis in the 

wounded skin and increased VEGFC levels.75   

Su et al stimulated melanoma cell lines with IFN-γ to acquire higher amounts of PD-L1  

containing exosomes.76 These exosomes were obtained from the conditioned medium and 

applied on epidermal cells and fibroblasts and on murine artificial wounds.76 This stimulation 

with pre-conditioned exosomes lead to faster re-epithelization, increase in epidermal cell 

migration via the PD-1 immune checkpoint pathway.76 The pro-inflammatory cytokine 

production of CD8+ T-cell was reduced upon stimulation with the PD-L1 enriched extracellular 

vesicles either.76  

The next developmental stage of the paracrine effect hypothesis is the fact that dying cells 

could secrete various different cytokines and chemokines.77 Thum et al. promulgated the 

hypothesis that the improvement of cardiac function was induced, due to the 

immunomodulatory effect of stem cells dying of apoptosis without experimental evidence.77 

Cells of the myocardium that are damaged by the hypoxic conditions of an acute myocardial 

infarction (AMI) release heat shock proteins, that activated via toll-like receptor protein-4 (TLR-
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4) dendritic cells and tissue resident macrophages.77-79 The macrophages further enhance the 

tissue damage by secretion of pro-inflammatory cytokines and the dendritic cells leads to the 

differentiation of effector-T-cells by antigen presentation and migration of these T-cells into the 

infarct area promoting local inflammation.77,79 Apoptotic cells on the other hand expressing 

phosphatidylserine on the outer layer of their cell membrane diminish the activation of dendritic 

cells and macrophages by interaction with their phosphatidylserine receptors, which results in 

the secretion of anti-inflammatory cytokines, as interleukin-10 (IL-10) or transforming growth 

factor- β (TGF-β).80-82 Moreover the activation of T-cells by antigen presenting dendritic cells is 

decreased and regulatory T-cells are activated instead.82,83 The so reduced inflammation of 

the hypoxic area leads to less scar formation, due to IL-6 down regulation and pro-

angiogenesis, due to increased prostaglandin E2 release of apoptotic cells.77,78,81,84  

The cardiac protection of stem cells could be enhanced by the addition of the supernatant of 

apoptotic PBMC (APOSEC) in a study by Winkler et al.85 In this study a porcine myocardial 

infarction was induced and cardiosphere derived cells with or without APOSEC were injected 

15 minutes after reperfusion.85 After one month a 2-deoxy-2-(18 F)-fluoro-D-glucose-positron 

emission tomography-magnetic resonance imaging was done, showing less scarred area in 

the APOSEC treated group, compared to the control group.85  
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Fig.  3. Theory of the dying stem cell adapted from Thum et al.77 Depiction of ischemic damage induced by 
myocardial infarction, leading to Toll-like receptor 4 (TLR-4) expression via heat shock proteins 
(HSPs) and thus activation of dendritic cells (DC) and tissue resident macrophages, which drive 
local inflammation.77 Apoptotic cells (both from application of ex vivo cells or internal production) 
bind to phosphatidylserine (PS) and phosphatidylserine-receptors (PS-R) on cells of the immune 

system and lead to secretion of anti-inflammatory proteins, such as TGF-β and IL-10.77 

Additionally they diminish the activation of Th1 cells triggered by dendritic cells. As a result less 
regulatory T-cells (Treg) drive inflammation at the site of hypoxic damage.77 

 

A positive effect of apoptotic cells was not only seen in stem cells, but also in autologous blood 

cells driven into apoptosis by oxidative stress.86,87 These apoptotic blood cells were 

intramuscularly injected in patients suffering from ischemic foot condition due to peripheral 

arterial occlusive disease.86,87 After injection the patients developed increased blood flow in 

the post-ischemic foot.86,87   

Moreover the application of autologous blood samples in patients with chronic heart failure 

exposed to oxidative stress lead to promising results with significantly diminished risk of death 

and hospitalization, compared to the placebo group in acute myocardial infarction.88  

Our working group could show, that ionizing irradiation induced apoptotic cell death in 

peripheral blood mononuclear cells (PBMC).89,90 The conditioned medium of these cells 

enhanced wound healing and angiogenesis as well as vasodilation in a myocardial infarction 

model.89,90  
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These studies inspired many researchers to test the effect of the secretome of stressed or 

dying cells especially in regenerative medicine.91 Of course these examples make clear, that 

these preconditioning concepts need to be done outside the human body, as treatment with 

irradiation, hypoxia or pro-inflammatory cytokines on a systemic level could lead to serious 

adverse events.     

8.4 Secretomes of various cell types in 
wound healing 

 

A pro-inflammatory state in the first phase of wound healing is important for pathogen 

clearance, yet in the following phases this excess of inflammation need to be converted into 

anti-inflammation to path the way for extracellular matrix and collagen repair.18 Cytokines and 

chemokines seem to have a crucial role in the initiation of these processes.18 Suggesting cells 

for regenerative medicine, which are capable of secreting such factors.  

In fact secretomes of various cell types were shown to enhance migration of immune cells to 

the wounded area and change the cytokine environment of the affected skin. 74-76 In the 

beginning mostly stem cells were used for production of conditioned medium.92,93 As positive 

effects on wound healing were found as a result of addition of various kinds of growth factors, 

the focus was layed on different cell types.94 As TGF-β can be produced by keratinocytes, 

platelets, macrophages or fibroblasts and EGF is secreted by fibroblasts, keratinocytes and 

macrophages, both essential parts of granulation tissue remodeling and re-epithelialization.94 

the idea to use cells, which are easier to obtain, than stem cells was born.  

Thus the conditioned medium of fibroblasts was used and really improved wound healing by 

pro-angiogenic and anti-inflammatory mechanisms.95 A positive effect was seen either for the 

secretome of epithelial cells, but the effect was driven by exosomes (extracellular vesicles).96  

As the activation of immune cells have a delicate influence on regeneration and wound healing, 

Laggner et al investigated dendritic cells stimulated with the secretome of PBMC and the 

resulting differentiation and maturation of this dendritic cells.97 After the addition of the PBMC 

secretome the maturation of dendritic cells was diminished and the differentiation was inhibited 

either.97 Regarding the pro-inflammatory effects of CD1a+ cells as phagosome development, 

as well as antigen-presentation the treatment with PBMC secretome lead to drastic decrease 

in the expression pattern of the necessary genes, which could also lead to a more anti-

inflammatory environment.97  
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Furthermore Laggner et al. revealed that treatment with the secretome of apoptotic PBMC 

could reduce mast cell activation, necessary for allergic reactions.98 The treatment of in vitro 

dermal mast cells resulted in secretion of anti-inflammatory signals and diminished the release 

of inflammation driving α-IgE-induced mediator of these mast cells.98 

Laggner et al was able to show, that the type of irradiation in a direct comparison of γ-irradiation 

and electron-irradiation on PBMCs did not show any difference in the production of 

regenerative paracrine factors.99 The secretion pattern in concern to the composition of 

extracellular vesicles, lipids, proteins and on a transcriptome level resembled to a high 

degree.99 

The secretome of apoptotic cells seemed to have an effect on microvascular obstruction, as 

showed in a myocardial infarction model.90 This beneficial effect, may be evoked by the 

prevention of aggregation of platelets accompanied by a vasodilating function.90 This 

vasodilation is conducted by higher iNOS and p-eNOS activation in coronary arteries, after 

stimulation with APOSEC.90  

Another interesting study could show, that the secretome of PBMC decreased neutrophil 

extracellular trap formation (NET) of neutrophils.100 These findings could give a hint to the 

mechanisms of action of cell secretomes on tissue regeneration.100 NET-formation is 

necessary for adequate repulsion of pathogens and infection in wounds, however uncontrolled 

NET activation leads to decreased wound healing, due to reactive oxygen species.101,102 

Surprisingly also pro-inflammatory factors secreted by macrophages displayed positive effects 

on wound healing.103 Also pre-conditioning of mesenchymal stromal cells with pro-

inflammatory substances e.g. TNF-α and IFN-γ induces cells to secrete pro-angiogenic factors, 

which ameliorate wound healing.75 

The secretome of PBMC may have addiational modes of action to increase wound healing, as 

Copic et al. could reveal.104 In a single cell sequencing analysis PBMC stimulated with the 

supernatant of PBMC (cultured for 24h) showed signitificantly increased expression of genes, 

that are important modulators of angiogenesis, e.g. VEGFA or SERPINB2.104 This is 

furthermore important for successful wound healing, which indicates a role of cell-cell cross-

talk in PBMCs, necessary for regeneration.104 Moreover PAI-2 (plasminogen activator inhibitor 

type II), which is encoded by SERPINB2 is an important regulator for the endothelial barrier 

function, which leads to the efflux of immune cells to the wounded area and thus increased 

inflammation.104 After stimulation with PBMC secretome the thrombin-mediated leakage of the  

endothelial barrier function could be inhibited.104  
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It became clear, that not only growth factors are responsible for the improved wound healing, 

yet a combination of pro-inflammatory, anti-inflammatory, pro-angiogenic proteins and factors 

affecting matrix-metalloproteinases and different collagens are most efficient. Cells that are 

capable of secreting all these factors at once, are for instance peripheral blood mononuclear 

cells. 105,106 

 

8.5 Peripheral blood mononuclear cells  

 

Peripheral blood mononuclear cells (PBMCs) is a collective term of various different cells, 

consisting of natural killer cells (NK-cells), T-cells, B-cells, monocytes and dendritic cells.105,106   

The T-cells can be differentiated into CD4+ and CD8+ cells. Regarding the CD4+ cells further 

discrimination into Tfh, Treg Th1, Th2, Th9, Th17 and Th22 cells with different functions is 

possible.107-111 For instance pro-inflammatory cytokines e.g. INF-γ and TNF are produced by 

Th1 cells, which play a role in delayed hypersensitivity responses, trigger monocyte-activation 

and increase cell cytotoxicity, especially upon encounter of intracellular bacteria.107-111 

Regulatory T-cells (Treg) express Forkhead-box-protein P3 (FOXP3) and release anti-

imflammatory cytokines as IL-10 and TGF-β.107-111 Th17 cells secrete IL-17, which acts as 

driver for autoimmune diseases, e.g. psoriasis or experimental encephalitis.107-111 Th2 cells 

produce IL-4 and IL-1β which is crucial for immunoglobulin G1 and E formation and B-cell 

survival. Tfh cells direct the proliferation and activation of antibody-forming B-cells.107-111 Th22 

secrete IL-22 and Th9 cells IL-9, which is linked to allergies, asthma and other autoimmune 

diseases.107-111 

CD8+ T-cells produce IL-12, IFN-γ,TNF-α and act cytotoxic, pro-inflammatory and antigen-

specific, yet can also act against cancer growth.112,113 Moreover they seem to be involved in 

atherosclerosis.113 

Follicular B-cells are activated via antigen-presentation of T-cells and react to Toll-like 

receptors, CD40 and B-cell receptors and may express MHC-II and CD27, resulting in plasma 

cell or memory B-cell transformation.114-116 Marginal zone B2 cells play a role in the immune 

reaction to lipids and act T-cell independent to pathogens.114-116 The function of B1 B-cells is 

not yet characterized in humans and still needs to be elucidated.114-116  

Dendritic cells stimulate T-cells and are characterized by expression of MHC I and II and trigger 

antigen-specific reactions of the immune system and consist of mDC (derived from monocytoid 

precursor cells, pDC (plasmacytoid cells) and cDC (classical dendritic cells).117-122 mDCs are 
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drivers of inflammation and migrate to inflammation areas and are even used in cancer 

treatment recently.117-122 pDC are responsible for antigen-presentation and IFN-I production. 

cDC are the major antigen-presenting cells especially to CD4+ cells.117-122 

Monocytes can also be divided in classical (CD14++CD16−, mostly involved in phagocytosis), 

non-classical (CD14+CD16++, pro-inflammatory and antigen-presenting function), 

intermediate (CD14++CD16+, having inflammatory functions, as well as phagocytic) and CD40 

positive cells. 123-125 The CD40+ monocytes have a strong pro-inflammatory function and are 

related to chronic kidney disease.123-125 

Natural killer cells (NK) can be divided in CD56lowCD16high cells, which merely act in a cytotoxic 

manner, or in CD56highCD16high/low cells, which secrete a plethora of pro-inflammatory 

cytokines.126 

These different cells of the immune system communicate, inhibit or induce its various functions 

in a direct or paracrine manner. For example, if mDC are not capable of producing an adequate 

amount of TGF-β, which is important for wound healing the activation of CD4+ (Th1 and Th17) 

and CD8+-T-cells will be increased.126 

 

A big advantage in using PBMC for research or therapeutical usage is the broad availability as 

waste product of thrombocyte concentrate production.127 Here blood samples gathered from 

healthy donors are divided into their different components, whereas the thrombocytes are 

obtained and further processed, the PBMC are discarded and may be used for research 

purposes.127 This makes them a cost-efficient and easy obtainable resource for future 

therapeutic applications. 

 

8.6 Types of programmed cell death 

At the beginning of the 19th century, Virchow described a specific type of cell death termed 

necrosis which quickly became the main topic for several research groups worldwide.128 An 

austrian researcher (Pischinger et al.) described a so-called “Leukozytolyse” 129,130 a 

death/consumption of leukocytes in blood smears first described in 1957.129,130 

While necrosis describes an uncontrolled cell death, a regulated form of cell death, so called 

apoptosis, was later discovered by Lockshin and Williams.131-134 Today, a plethora of 

programmed cell death types are known, for example ferroptosis, entotic cell death, 

autophagy-dependent cell death, immunogenic cell death, lysosome-dependent cell death, 
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mitochondrial permeability transition (MPT)-dependent necrosis, pyroptosis, parthanatos, 

NETosis associated cell death (Figure 4). 135,136  

 

 

Fig. 4.  Molecular mode of actions of cell death: names and distinct types suggested by the Nomenclature 
Committee on Cell Death published in 2018 and adapted from Lorenzo Galluzzi et al 135 
Shown are the different types of regulated cell death (RCD). Depicted as an example of various 
morphological characteristics a scheme of an apoptotic and necroptotic cell is depicted in the 
middle of the figure. Abbreviations: mitochondrial permeability transition (MPT), autophagy-
dependent cell death (ADCD), lysosome-dependent cell death (LDCD) and immunogenic cell 
death (ICD) 

 

Regulated cell death usually occurs upon either of two main triggers including harmful 

exogenous influence or renewal and development of tissue. While such exogenous damaging 

stimuli aim for targeted physiological degradation, regulated apoptosis occurs during various 

physiologic processes as for example hand and finger development during embryonic stage.135 

Furthermore apopotosis is very important for gametogenesis of oocyte and spermatozoid 

maturation.137 The signal for apoptosis induction may be DNA damage or unreparable 

mutations.137 Apoptosis appears to be of vital importance for a broad range of normal 

developmental processes since diminished apoptosis in drosophila melanogaster is 

accompanied with abolished formation of wings, legs and nervous or gastrointestinal system. 

138,139 In murine models, downregulation of specific apoptosis triggering genes (e.g. Bax and 

Bac140), lead to limited developmental abnormalities, due to various alternative activation 

mechanisms of downstream effectors of apoptosis induction, or activation of other non-
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apoptotic forms of cell death. 140,141 Furthermore, dysfunctional apoptosis activation 

implements autoimmune disease, viral infection and cancer. 141  

Apart from the crucial involvement in developmental processes, apoptosis further serves as 

safety mechanism eliminating potentially harmful cells. Upon exposure to exterior stress 

signals dying cells secrete paracrine factors , known as damage-associated molecular patterns 

(DAMPs) or alarmins, to adjacent cells, thereby  activating  the immune system as first line of 

defence to bacteria, cancer or trauma to enhance wound healing. 142-144  

Classification of various types of cell death based on morphological characteristics lead to the 

following three categories: 135 

1) Type I (e.g. apoptosis): pyknosis and nuclear fragmentation, whereas the 

plasma membrane stays intact and forms blebs, also known as apoptotic 

bodies, which are engulfed by phagocytosis of immune cells and ultimately 

degraded in the lysosome of for instance macrophages 

2) Type II (e.g. autophagy): vacuolization in the cytoplasm ending by phagocytosis 

and lysosomal degradation  

3) Type III (e.g. necrosis): without blebbing or vacuolization as type I and II, leaving 

cells with ruptured cell membrane and without phagoytosis 

 

This nomenclature was deficient since it did not consider function, triggers of cell death,  

secreted factors , impact on surrounding cells or activated signalling pathways. With growing 

knowledge of mechanisms and function the Nomenclature Committee on Cell Death (NCDD) 

came up with a new definition in 2005.135  

The resulting nomenclature is depicted in figure 4 above.  Based on this nomenclature the 

different types of cell death relevant for this thesis will be discussed below. 

8.6.1 Apoptosis 

Apoptosis is induced via caspase activation leading to a controlled cell death, morphologically 

characterized by karyorrhexis, pyknosis and most characteristically the blebbing of the plasma 

membrane.136 We discriminate two forms of apoptotic cell death: 1) intrinsic and 2) extrinsic 

apoptosis.136  

8.6.1.1 Intrinsic Apoptosis  

During intrinsic apoptosis  the cell membrane remains intact and to some extent even cellular 

metabolic activity.145 The final aim of an apoptotic cell is to be phagocytosed by macrophages 

or other immune cells.145 Due to the lack of phagocytic cells in vitro, a nearly necrotic form also 

known as secondary necrosis with degradation of the plasma membrane can be observed in 
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cell culture. This degradation is associated with pore formation initiated by gasdermin E 

(DFNA5). 146,147  

Intrinsic apoptosis is initiated by a group of proteins containing domains of B-cell 

CLL/lymphoma 2 (BCL2) homology (BH), which can be divided in three sub fractions 

composed of the pro-survival branch (e.g. MCL1, BCL-2 itself and BCL-XL); the effector protein 

family that consists of e.g. BCL2 associated X (BAX) and the BCL2 antagonist/killer 1 (BAK); 

or the pro-apoptotic BH3-only proteins, as for example PUMA (P53 upregulated modulator of 

apoptosis) and BID (BH3 interacting-domain death agonist). 148,149  

Pro-apoptotic regulation mechanisms 

The BH3 proteins act as direct or indirect regulators of the pore forming effectors.149,150 BAK 

or BAX induce pore formation in the mitochondrial membrane.149,150 The mitochondrial outer 

membrane permeabilization (MOMP) results in apoptosis and is an irreversible 

process.149,150,145 These pro-apoptotic BH3-only proteins are upregulated after DNA damage 

caused by endogenous metabolites, alimentary or environmental carcinogens, or 

chemotherapy.149,150 As soon as the pro-apoptotic signalling outweighs the anti-apoptotic 

players, e.g. MCL1 or BCL-2 that inactivate BH3-only proteins by direct binding, the effector 

proteins are activated.149,150 The effectors BAK or BAX can be activated by the BH3-only 

proteins including BH3 interacting domain death agonist (BID) and BCL2-interacting mediator 

of cell death (BIM) in a direct manner and result in pore formation in the outer mitochondrial 

membrane (OMM), leading to the release of cytochrome c (Cyt c) further known as the above 

mentioned MOMP.149,151 Cytochrome c acts as trigger in the activation of the caspase cascade 

resulting in apoptosis.18 Whereas BAX translocates as inactive monomer between the cytosol 

and the mitochondria, where it can form active oligomers, BAK stays in the mitochondria as 

inactive monomeric, membrane protein, often complexed with voltage-dependent anion 

channel 2 (VDAC2), which inhibits homo-oligomerization of BAK and therefore activation.152,153  

The activation of BAK and BAX is carried out by BH3-only proteins transcriptionally or post-

translationally, which is essential for the regulation  of apoptosis.154-156 Through this strict 

regulation prevention of autoimmunity by induction of apoptosis of autoreactive T-cells 

expressing T-cell receptor (TCR)–CD3 complex can be proceeded by the organism.154-156 The 

activation of certain BH3-only proteins is induced by transcriptional upregulation, especially in 

BIM, phorbol-12-myristate-13-acetate induced protein 1 (often referred to as NOXA) and p53- 

upregulated modulator of apoptosis (PUMA).154-156  

Whereas the pro-apoptotic function of BID is triggered post-translationally.157-160 The above 

mentioned proteins are capable of forming direct interactions with BAK and BAX and as a 

consequence formation of homo-dimers of mitochondrial BAK via a BH3‐in‐groove 
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interface.161-163 This dimerization in the mitochondrial membrane builds a lipidic pore in the 

membrane and leads to destabilization.161-163 BAX is capable of forming arcs and rings after 

oligomerization leading to MOMP shown by single‐molecule localization microscopy after 

transfection with GFP-Bax.164 165   

Besides pro-apoptotic activation via BH3-only proteins, auto-activation of BAK and BAX can 

occur after downregulation of anti-apoptotic proteins such as BCL-2 or MCL1. 157 Furthermore, 

activation can occur via prolyl isomerase 1 (Pin1), which enhances BAK activation caused by 

tumor suppressor p53 or diminishing the pro-survival signaling produced by binding of ATR to 

BID. 166-168 169  

MOMP leads to release of on the one hand cytochrome c and on the other hand second 

mitochondrial activator of caspases (SMAC) into the cells’ cytosol, 170-172 where cytochrome c 

attaches to apoptotic peptidase activating factor 1 (APAF1), found on the inactive pro-caspase 

9 (CASP9).170-172 Further binding with ATP results in the formation of the crucial apoptosome 

that initiates the activation of caspase 9.173 This activation is realized by building homo-dimers 

of CASP9 or the hetero-dimerization of APAF1 and CASP9 proteins.174,175 The apoptosome 

formation catalyses a proteolytic cascade of the executioner caspases 3 and 7 resulting in 

apoptotic cell death. 176 177 The SMAC protein acts as pro-apoptotic regulator not only by 

preventing stable binding of X-linked inhibitor of apoptosis (XIAP) to caspases, 171 but also 

blocking various other inhibitors of apoptosis (IAP)-family members.172 While the deactivation 

of XIAP works by direct binding, SMAC proteins (Second mitochondrial activator of caspases) 

inhibit the function of c-IAP1 and c-IAP2 (cellular inhibitor of apoptosis proteins). c-IAP1 and 

c-IAP2 are important for the upregulation of anti-apoptotic factors such as caspase 8 or cellular 

FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein c-FLIP. 178-180 

The catalytic mechanisms of the executioner caspases results in the degradation of the cell 

and evokes DNA fragmentation, blebbing of the cell and phosphatidylserine exposure on the 

outer membrane (which is usually only located on the inner membrane), as the final result of  

intrinsic apoptosis. 181-183 Phosphatidylserine is a marker often used in flow cytometry to detect 

apoptotic cells in extracellular stainings. 181-183 

Anti-apoptotic regulation mechanisms 

The anti-apoptotic proteins from the BCL-2 family not only inhibit the activation of BH3-only 

proteins by the above mentioned binding mechanisms. 184 185  Additionally BCL-2 plays an 

important role in the Ca2+ dynamics  in the endoplasmic reticulum. 186 The BCL-2 family protein 

BCL-XL increases energy metabolism efficiency by binding to the F1FO ATP synthase, thereby 

enhancing the ATPase activity and diminishing the ion leak, which in turn reduces the 

conductance of the membrane leak. 187,188 Another anti-apoptotic mechanism of BCL-2, 
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specifically utilized by cancer cells, is the regulation of cytochrome c oxidase activity and 

formation of electron transport mechanisms, in consequence of increased energy demands 

after oxidative stress and thus prevention of reactive oxygen species (ROS) 

overproduction.189,190  

The inactivation of BAK (and therefore anti-apoptotic effect) is induced by the binding of its 

own C-terminal α helix to its activation spot consisting of BH1, BH2 and BH3 domains.21  

It can be assumed, that X-linked inhibitor of apoptosis proteins (XIAP) acts anti-apoptotic 

through SMAC degradation in the mitochondria. 191  

Other inhibitor of apoptosis proteins(IAPs)s act by inducing ubiquitination and thus  inhibition 

of caspase activity. 192-194Furthermore, IAPs can enhance the tumor necrosis factor-α (TNF-α) 

driven ubiquitination of  receptor interacting serine/threonine kinase 1 (RIPK1). 195 The TNF-α-

dependent activation of the pro-survival regulator nuclear factor 'kappa-light-chain-enhancer' 

of activated B-cells (NF-κB) is strongly reduced in the absence of c-IAP1 and c-IAP2. 195  

8.6.1.2 Extrinsic Apoptosis 

Extrinsic apoptosis is caused by extracellular stress and initiated predominantly via 

dependence receptors, which are activated in the absence of its ligands or  death receptors, 

including for exampleTNF receptor superfamily members 1A, 10A, 10B and Fas cell surface 

death receptor (FAS or CD95) . 196-198 Apoptosis induction through death receptors is initiated 

by the formation of a death-inducing signalling complex (DISC) upon ligand-stimulation of the 

FAS receptor or TNF receptor superfamily member 10A and 10B (TRAIL-R1 and TRAIL-R2) 

at the cytoplasmic tail of the receptor.199,200 Upon activation and subsequent trimer formation 

of FAS, TNF receptor superfamily member 1A (TNFR1), TNFR2 or TRAIL2-R1/2, further 

proteins such as caspase-8 (CASP8) or caspase-10 (CASP10), cFLIP or Fas-associated 

protein with death domain (FADD) are recruited to the activated receptor. While all trimers 

eventually lead to apoptosis, their downstream signalling mechanism varies.199,200 The 

activated caspases induce apoptosis by either directly cleaving downstream executioner 

caspases (CASP3, CASP6, CASP7) or initiate the intrinsic apoptosis pathway by cleaving 

BID.199,200,201 The TRAIL-receptors build a complex with FADD, caspase-8 and Receptor 

Interacting Protein (RIP-1) kinase upon activation.69,201The TNFR1-trimer can form two pro-

apoptotic cytoplasmic complexes, complex IIA, consisting of Tumor necrosis factor receptor 

type 1-associated DEATH domain (TRADD), FADD and CASP8, and complex IIB, consisting 

of FADD, RIP-1 and caspase-8. 202,69 Furthermore, the TNFR1-trimer can also form a pro-

survival complex  composed of the anti-apoptotic c-IAP1/2, TNF receptor-associated factor 2 

(TRAF2), TRAF5, TRADD and RIP-1, which activates NF-κB. 69,201 Although only verified for T 

lymphocytes and glycosylation of FAS, the modification of death receptors affect the sensitivity 
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for cell death induction of the specific cell type they are attached to.203  The catalytic function 

of CASP8 is triggered by the interaction of CASP8 and FADD in the DISC, leading to 

dimerization of CASP8 molecules. 204,205 Active CASP8 causes the cleavage division of c-FLIPL 

and CASP8 heterodimers and give way for the CASP8 homodimerization and activation of 

cleavage activities. 206  

 

 

Fig. 5.  Extrinsic cell death and its initiation and inhibitory pathways adapted from Dickens et al 200 

 

In addition to the inhibitory capacity of c-FLIPL, extrinsic apoptosis can further be inhibited by 

various alternative mechanisms including for example phosphorylation of the tyrosine residue 

Y380of CASP8.207 Whereas the phosphorylation of the T273 part of caspase 8 leads to an 

increase in the pro-apoptotic function. 207-209  

Certain cell types may escape FAS induced extrinsic apoptosis while FAS signalling inevitably 

results in apoptosis in other cell types.207-211 In type I cells, such as lymphocytes, activation of 

CASP3 and CASP7 serves as sufficient trigger for apoptosis and cannot be escaped by anti-

apoptotic BCL-2 activity or by depletion of BID.207-211  

We distinguish between two cell types, where FAS can induce apoptosis: in type I cells such 

as lymphocytes the activation of caspase-3 and -7 by caspase-8 is a sufficient trigger for 
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apoptosis and the depletion of BID, nor the anti-apoptotic BCL-2 proteins can prevent this 

step.210,211 This serves as crucial mechanism to avoid autoimmunity. Contrarily, type II cells, 

e.g. hepatocytes, pancreatic β-cells and certain cancer cells, may escape FAS-induced 

apoptosis by XIAP and the lack of BID. 210,211  

In Type II cells on the other hand, e.g. hepatocytes, β-cells of the pancreas or certain cancer 

cells the cleavage of caspase-3 and -7 can be averted by XIAP and a lack of BID (which is 

cleaved by caspase-8) can avoid extrinsic apoptosis.211-213 Cleaved BID (truncated BID; tBID) 

acts as a BH3-only protein to activate BAK/BAX in the OMM.214-216 In addition to these escape 

mechanisms, CASP10  may also act anti-apoptotic by actively dissociating CASP8 from DISC, 

whereas the atypical cadherin  (FAT1) prevents the association of caspase-8 to the DISC after 

FAS activation.217,218   

As shown in figure 5, the activation of TNFR1 is not solely inducing apoptosis, yet after 

polyubiquitination of RIPK1 by c-IAP1/2 in the complex I or linear ubiquitin assembly complex 

(LUBAC) a pro-survival signal is sent to the cell.219-221 RIPK1 can lead to survival by activating 

(phosphorylation) NF-κB and on the other hand inactivates the inhibitors of NF-κB (IκBα and 

β) by phosphorylation.202,222,223 Furthermore the phosphorylation of RIPK1 by IKK, transforming 

growth factor-β-activated kinase 1 (TAK1) or another kinase known as mitogen-activated 

protein kinase-activated protein kinase 2 (MAPKAPK2) inhibits its interaction with FADD and 

caspase-8 resulting in the inhibition of apoptosis.224-227 On the contrary deubiquitylation of 

RIPK1 for instance by CYLD (CYLD lysine 63 deubiquitinase) leads to enhanced association 

of RIPK1 with FADD and capsae-8  to the complex II driving extrinsic apoptosis, in the 

presence of IAP-inhibitors known as SMAC-mimetics.228,229 Another mechanism of complex II 

formation is the ubiquitylation of TRAF2 by HECT domain E3 ligase (HACE1), intriguingly a 

lack of HACE1 does not impair the TNFR1 induced RIP1/RIP3 assembly important for 

necroptosis induction.230  

Extrinsic apoptosis induction is crucial for multicellular organisms, a lack of membrane bound 

FAS ligand leads to a activation of pro-survival and pro-inflammatory pathways and these mice 

develop an autoimmune phenotype similar to lupus.231 Tumor necrosis factor-related 

apoptosis-inducing ligands (TRAIL) with the help of LUBAC can prepare the ground for both, 

apoptosis by building the DISC and pro-survival pathways by activation of NF-κB, extracellular 

signal-regulated kinases (ERK) or p38 among others.232,233  

The second form of death receptors are the dependence  receptor family including 20 different 

proteins and can be activated by the absence of ligands.196 Among these receptors we can 

find Sonic Hedgehog receptors Patched (Ptc), netrin-1 receptors DCC (deleted in colorectal 

carcinoma), unc-5 netrin receptor A (UNC5A-D), UNC5H1-4, neurotrophin receptor 



25 

 

neurotrophic receptor tyrosine kinase 3 (NTRK3), TRKA and TRKC, nerve growth factor 

receptor p75NTR, insulin receptors and insulin-like growth factor (IGF1r), Neogenin and many 

more. 234,235 196 If for example the DCC receptor is cleaved via caspase-3, due to lack of ligands 

an association of APPL1 (Adaptor protein, phosphotyrosine interacting with PH domain and 

leucine zipper 1) and caspase-9 is built leading to caspase-cleavage and apoptosis.236 Patched 

triggers apoptosis by complex formation of four and a half LIM domains 2 (FHL2 or DRAL), 

tumor-up-regulated CARD-containing antagonist of caspase nine (TUCAN) and NEDD4 

(neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein 

ligase), which starts caspase-9 activation.237,238 UNC5B initiates p53-dependent cell death due 

to the dephosphorylation of death associated protein kinase 1 (DAPK1) executed via protein 

phosphatase 2 (PP2A). 239,240 Another unc-5 netrin receptor (UNC5D) after cleavage done by 

caspase-3 acts as gene expression regulator of pro-apoptotic proteins in the nucleus, whereas 

Neurotrophic Tyrosine Kinase, Receptor, Type 3 (NTRK3) after being cleaved by caspase-3 

relocates into the mitochondria for caspase-9 activation.241,242 Although the exact molecular 

mechanism is still to be elucidated TLR3 either is capable of apoptosis induction by activation 

of caspase-8 involving TIR-domain-containing adapter-inducing interferon-β (TRIF).243 

 

8.6.2 Necroptosis 

The evolvement and life of multicellular organisms depend on the homeostasis of cell survival 

and death.131 Without a programmed and regulated pattern of cell death, embryonic life-forms 

die during their development.244-246 The importance of necroptosis for embryonic development 

is highlighted by the fact that, mice deficient for necroptotic cell death pathways die at an early 

embryonic stage.244-246  

Necroptotic cell death is completely independent of caspase activation. Necroptotic cells 

display morphological properties characterized by translucent cytoplasm, oncosis, 

permeabilization of both lysosomal and plasma membrane, whereas the nucleus stays 

intact.136  

Necroptosis requires the activation of the receptor-interacting protein kinase-1 (RIPK-1) 

receptor- and interacting protein kinase-3 (RIPK3).131,247-251 The implications of TNF-α 

regarding the regulation of molecular pathways and cell death patterns has been investigated 

since the 1980s, however only the breakthrough discovery of the RIP-kinases enabled the 

exploration of the necroptosis and its consequences. 131,247-251  

These two momentous findings along with the opportunity to inhibit necroptosis with 

Necrostatin-1 opened up the possibility for scientists to investigate necroptosis as a formerly 
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known blank area on the map.220,252 Programmed cell death is triggered among others by TNF-

α which binds to the Tumor necrosis factor -α receptor (TNFR) and induces a polyubiquitination 

of RIPK1 via the NF-κB pathway.220,252 Deubiquitination of linear ubiquitin chains of RIPK1 

disrupts the RIP-kinases feature to initiate pro-survival signalling.220,252 Tumor necrosis factor 

receptor type 1-associated DEATH domain protein (TRADD) and the ligand Fas-Associated 

protein with Death Domain (FADD) assemble to the pro-caspase-8, yet in deviation to the 

normal formation of caspase-8 homodimers, FLICE-like inhibitory protein (FLIP) structurally 

mimics caspase-8 and associates to the protein.128,245,253-255 Thus a heterodimer lacking 

protease activity is created, obviating activation of apoptosis.128,245,253-255 The loss of function 

of caspase-8 or FLIP leads to an intracellular complex composed by RIPK1 and RIPK3, ending 

in the formation of the so called “necrosome”.128,245,253-255 Consequently, mixed lineage kinase 

domain-like (MLKL) is activated to initiate necroptosis. 128,245,253-255 RIPK3 phosphorylates the 

MLKL, which can form oligomers and bind to the phosphatidylinositol phosphate species in the 

cell membrane leading to the flip of the inner membrane to the outside e.g. of 

phosphatidylserine, which is very important for cell death detection due to its binding capacity 

to Annexin-V. 245,254,256,257 Heat shock protein-90 (HSP-90) also plays a role in necroptosis as 

a lack of it inhibited the translocation of activated MLKL to the cell membrane. 258 259 MLKL can 

also regulate Ca2+ influx after its localization into the cell membrane and thus demonstrates 

another mechanism of necroptosis induction. 260 Data suggest that MLKL activates a 

disintegrin and metalloprotease (ADAM), which is a family consisting of various different 

proteases in the cell membrane, prompting ectodomain shedding of cell adhesion molecules 

disrupting the cell integrity or leading to cell migration, growth factors or cytokines, which 

enhance inflammation as soluble fragments.261 MLKL can pave the way to necroptosis by 

froming cation channels for Mg2+ creating permeability and cell membrane depolarization.262  

Beside the initiation of necroptosis by TNF many more activators are known, e.g. FAS, TLR3 

and TLR4, pathogen recognition receptors (PRRs) and Z-DNA binding protein 1 (ZBP1). 

249,263,264 The ligand for TLR3 is double-stranded RNA of viruses in the endosome, whereas 

TLR4 can be activated by lipopolysaccharides (LPS) in the membrane of gram-negative 

bacteria or Damage-associated molecular patterns (DAMPs) at the cell surface leading to the 

RIP homotypic interaction motif (RHIM) and TRIF interaction resulting in RIPK3 activation.263 

ZBP1 detects cytosolic DNA and RNA (also very essential for antiviral immune answer) and 

acts via interferon type I synthesis induction and NF-κB. 265,266  

As inhibitory player of the necrosome, carboxyl terminus of Hsp70-interacting protein (CHIP)  

was identified for ubiquitination of RIPK1 and RIPK3 causing lysosomal degradation and A20 

for inhibition of the necrosome-complex building by ubiquitination of RIPK3.267-269 Protein 

phosphatase Mg2+/Mn2+ dependent 1B (PPM1B) dephosphorylates RIPK3, whereas aurora 
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kinase A (AURKA) prevent the RIPK1 and RIPK3 interaction by phosphorylation steps and 

therefore both inhibit the necrosome assembly. 270,271 The RIPK3 activation further depends on 

the availability of co-stimulatory factors as CDC37 and heat shock protein 90 (HSP-90).272 One 

of the most important factors of necropotosis induction is the caspase-8 deficiency or 

inactivation. 273,274  

Necroptosis may have developed as a cellular opportunity for the defence against intracellular 

infection. 128,275,276 However, various effects of necroptosis have been shown so far. 

Necroptosis seems to play a role in atherosclerosis277, myocardial infarction278, traumatic brain 

injury279 and Salmonella enterica infection. 280 

Despite the increasing number of cellular and clinical research projects, the path of utter 

understanding of necroptosis is still a long road to go.  

 

8.7 From cell death to cell survival 

 

Our working group around Prof. Ankersmit tried to further develop the conclusion of cell-based 

regenerative therapies and tried to use the secretome of PBMCs281 The results were promising 

with significant reduction of infarct size in a rodent AMI model, after injection of the 

PBMCsec.281  

To enhance the regenerative capability of PBMCs, they were driven into apoptosis.71,282 The 

apoptosis was triggered by γ-irradiation, as it is commonly used to prepare blood transfusion 

for patients with immunodeficiency.281  

As a next step only the secretome of the apoptotic PBMC after 24h of cultivation was used, 

due to the literature and data gathered from the use of conditioned medium of stem cells in 

myocardial ischemia.71,282 The secretome of the irradiated apoptotic PBMC hereinafter referred 

to as "APOSEC" was able to restore cardiac function after AMI in a rat model, after intravenous 

infusion.282 These effects were explained by an increased amount of pro-angiogenic cytokines, 

for instance IL-8, vascular endothelial growth factor (VEGF) and growth related oncogene-α 

(GRO-α).281,282 The inhibition of reperfusion-induced cardiomyocyte death or induction of 

cytoprotection have been suggested as a potential mechanism of action.281 Therefore, we have 

identified several mechanisms that may at least partially elucidate the effects stated above. 

APOSEC induces cytoprotection, as well as anti-apoptotic, pro-survival mechanisms, in 

cardiomyocytes in vitro. Incubation of APOSEC augments the phosphorylation of AKT, 

p42/p44, Erk1/2, p38, MAPK, HSP27, c-Jun, and cAMP response element binding protein 
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(CREB) in human cardiomyocytes within 60 min, and the observed effects on Hsp27 and 

CREB phosphorylation are dose-dependent.281,282 In addition, the expression of anti-apoptotic 

proteins, such as Bcl-2 and BAG1, was induced. Furthermore, APOSEC prevented cell death 

in cardiomyocytes in a starvation assay281 and we showed that the inhibition of select factors 

(VEGF, IL-8, ENA-78, MMP9) alone or in combination did not attenuate the induction of CREB 

and Bcl-2 in cardiomyocytes, indicating unknown biological mechanisms.282  

The regenerative effect was not only shown in stressed cardiomyocytes, but also in a murine 

wound healing model. Paracrine factors derived from PBMCs induce the activation of 

cytoprotective proteins in keratinocytes (CREB, Erk1/2, c-Jun, Akt, HSP27), dermal fibroblasts 

(Erk1/2, c-Jun, Akt, Hsp27), and dermal microvascular endothelial cells (CREB, c-Jun, 

HSP27).57  

Furthermore, the PBMC secretome seemed to have vasodilatory effects. 90 Hoetzeneker et al 

was able to demonstrate that the co-incubation of platelets with APOSEC lead to an 

enhancement of phosphorylated vasodilator-stimulated phosphoprotein (VASP) and as a 

consequence inhibiting platelet aggregation.90 Moreover the treatment of human umbilical vein 

endothelial cells (HUVEC) with APOSEC lead to an increased release of vasoactive 

substances such as p-eNOS and iNOS.90 Not only this indirect regulation was observed, yet 

also a direct vasodilation in myographical testing on coronary artery rings could be shown.90 

Thus we can suggest a role of APOSEC in vasodilation, which may have an impact on early 

wound healing. As previously discussed after the initial vaso-contractile period after wounding 

with thrombocyte clotting to stop the wound from bleeding, vasodilation plays an essential role 

in the inflammatory phase of wound healing leading to migration of macrophages and nutrient 

transportation to the wounded site.7 

In a spinal cord injury (SCI) study in rats, positive effects on the outcome after traumatic stress 

were revealed.283 Our working group also demonstrated an up-regulation of Erk1/2 in spinal 

cord tissue from naive rats exposed to human APOSEC via intraperitoneal injection.283 

Astrocytes and Schwann cells co-incubated with APOSEC exhibit CREB, Erk1/2, c-Jun, Akt, 

and HSP27 phosphorylation in vitro (the latter only in astrocytes). CREB phosphorylation has 

also been shown in neurons.283 Ischaemia is a severe problem in SCI. We showed an increase 

in pro-angiogenic chemokine (C-X-C motif) ligand 1 (CXCL1) and neuroprotective Brain-

Derived Neurotrophic Factor (BDNF) after administration of APOSEC to naïve rats in vivo.283,284  

The inflammatory response after SCI is mediated by monocytes and macrophages, which 

resolve inflammation. In a previously published rat model of SCI, Haider et al. demonstrated 

increased infiltration of CD68+ cells (by immunohistological analysis) to the site of the inflicted 

injury in the PBMC secretome group.283 However, the number of iNOS-positive cells (reflecting 
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microglia activation) was decreased.283 Haider et al. were also able to show that incubation of 

CD14+ cells with the MNC secretome up-regulates markers associated with M2 polarization, 

indicating a shift from pro- to anti-inflammatory immune activation.283 

Beside the monocytes also the neutrophils, the most numerous subpopulation of leukocytes, 

play a significant role for wound healing.100,285 They appear as first responders to a wounded 

area, to fight infections via phagocytosis and secretion of reactive oxygen species (ROS) and 

additionally the production of neutrophil extracellular traps (NETs).100 The NET formation, 

which is important in the inflammatory phase of wound healing, holds the potential to massively 

impair tissue regeneration if it is acting excessively.15 Klas et al. could show, that the 

stimulation of neutrophils with the secretome of PBMCs reduced the ROS production and 

diminished the activation of protein arginase deiminase 4 (PAD4), which leads to decreased 

NET-formation.100 The exact regulation of NETosis may be an important element in improved 

wound healing. 63,286  

A synergistic effect of the PBMC secretome could also be verified in further studies of Klas et 

al.100 Klas et al could show, that neutrophil extracellular trap (NET)-formation was only 

diminished after treatment with the supernatant of whole PBMC cultures.100 Stimulation of 

neutrophils with lipid or protein subfractions of the PBMCs did not result in the same beneficiary 

effect.100 

Bacterial infections also lead to chronic non healing ulcers or prolong adequate healing.287 

Another positive effect on wound healing of APOSEC may be the antimicrobial activity shown 

by Kasiri et al.288 He could demonstrate that the growth of Pseudomonas aeruginosa a 

common gram-negative bacteria was reduced by the application of the PBMC-secretome.288 

Furthermore the growth of Escherichia coli and Staphylococcus aureus were significantly 

inhibited by the application of APOSEC.288  

The angiogenic properties of the PBMC secretome have been shown in an aortic ring assay 

and 3D cultures of spinal cord tissue.283 In addition, in mesenchymal fibroblasts incubated with 

APOSEC, our working group demonstrated increased IL-8, MMP9, and mRNA levels of 

proteins associated with angiogenesis.91 Moreover, angiogenesis is crucial for wound healing, 

and the pro-angiogenic capacity of the secretome of PBMC (PBMCsec) has been shown in 

vitro (increased proliferation of endothelial cells tested via tube formation assay) and in vivo 

(increased number of CD31+ cells in a mouse model of wound healing).57  

This pro-angiogenic effect could be verified by Copic et al., as tube formation assays after 

stimulation with plasma(from whole blood), that was treated with PBMCsec showed increased 

endothelial activity.104 This increase in angiogenesis may be induced by the upregulation of 

genes, such as SERPINB2, VEGFA or CXCL5, as shown in a single cell sequencing analysis 
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after stimulation of monocytes by PBMCsec.104 Furthermore upon stimulation of PBMCsec the 

thrombin-mediated endothial leakage was ameliorated, leading to preserved endothelial 

barrier function.104 A retained endothelial barrier function prevents excessive migration of 

immune cells and thus exaggerated inflammation. 104 

After promising in vitro results for wound healing, our working group sought to explore the 

effect of PBMCsec in vivo. In the study of Mildner et al after application of the supernatant of 

PBMC on punch biopsy wounds an increased wound closure could be detected from day 3 

and on day seven, the tissue analyzed with histological stainings appeared to have matured 

to a higher degree, as the control groups treated with medium and sodiumchloride alone.16 In 

an scratch assay the migratory capacity of fibroblasts and keratinocytes was ameliorated in 

vitro after stimulation with the secretome.57  

 

Fig.  6. Effects of PBMC secretome on wound healing in a murine model. Adapted from Mildner et al 57 The 
time curve displays the wound closure within 3 days in given in percent after daily treatment with 
PBMC supernatant (SECPBMC) physiologic sodium chloride-solution (NaCl) or medium alone.57 
The wound closure after seven days is shown on the left and below the neo-angiogenesis was 
analyzed using histological sections of the wound area.57 

 

Wagner et al could reveal a beneficiary effect of the secretome of apoptotic PBMCs 

(MNCaposec) in a murine diabetic wound model (LepRdb/db mice).61 After 25 days of 

wounding the unclosed area was signicantly smaller in the mice treated with APOSEC 

compared to the vehicle treated control group (showed in the figure below).61 
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Fig.  7. Effects of the secretome of apoptotic PBMC (MNCaposec) in a murine wound healing model (drug 
vehicle was used as control)61  A photograph of the wounded area treated with MNCaposec or 
vehicle. B Wound circumference depicted in fold change. C Immunohistochemical analysis of the 
wounded area (representative sections of skin treated with MNCaposec or vehicle.61  

 

In immunohistochemical analysis (Hematoxylin and eosin staining) the treatment of wounds 

with MNCaposec lead to decreased wound area and showed more re-epithelialization 

compared to the vehicle treated controls.61 

Furthermore the positive effects of irradiated PBMC on re-epithelialization could be verified in 

the study of Hacker et al.89 After a standardized burn injury the skin of pigs treated with the 

irradiated PBMC secretome depicted an increased epidermal thickness as well as a higher 

number of CD31+ cells, suggesting a higher angiogenic activity in the damaged tissue.89 

Incubating T cells with the PBMC secretome resulted in the induction of apoptosis, which was 

blocked by pre-incubation with caspase 3 and caspase 8 inhibitors, indicating the involvement 

of external pathways.90  

Moreover, the quality and strength of the newly formed skin was analyzed by quantification of 

Rete ridges, which act as stabilizers between the epidermis and dermis, leading to better 

compensation of shear stress.89 The length of rete ridges was found higher in the area treated 

with the secretome of PBMC compared to the medium or isotonic sodium chloride solution 
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(NaCl) treated area. 89 In the histological section of the border zone keratin-10 was stained as 

marker for epidermal differentiation.89 As shown in the figure 7 below the increased proliferation 

of the epidermis in the wounds treated with PBMC secretome could be detected.89  

 

 

Fig.  8. Keratin 10 staining in porcine wound healing adapted from Hacker et al 89 Increased epidermal 
proliferation was shown with keratin 10 stainings (red) in a wound treated with a) NaCl b) medium 
c) the secretome of PBMC or d) the secretome of irradiated PBMC. The asterisk marks the 
wounded area.  

 

After addition of PBMCsec on rodent skin flap wounds lower necrosis-rates were observed 

leading to improved wound healing.289The wound and flap area were excised after day 7 of 

PBMCsec application and the number of vessels were evaluated in immunohistochemical 

sections.289 The results were astonishing, as the number of vessels was higher in the 

PBMCsec cohort, whereas the control group undergoing sham surgery clearly showed more 

von Willebrand factor-positive vessels.289 

The PBMC secretome seems to have multiple ways to implement its beneficial effects on 

wound healing. Potential modes of action and the studies referring to the respective range of 

subjects are summed up in the figure below. 
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Fig. 9. Possible modes of action of PBMC secretome, regarding pro-angiogenic effects, cytoprotection, and 
regulation of the immune system.99 Adapted from Hacker et al. 99 

 

Beer et al. analyzed the secretome of irradiated and untreated PBMCs regarding their 

composition of lipids, proteins and microvesicles.63 He could show, that the supernatants of 

PBMCs contained higher levels of triglycerides, cholesterol and phospholipids after 

irradiation.63 Moreover the amount of oxidized lipids significantly increased in the irradiated 

group.63 The number of microvesicles and exosomes was increased in the supernatant of 

irradiated of PBMCs as well.63 To investigate the role of proteins, lipids, exosomes and 

microparticles they were applied on fibroblasts scratch assays.63 The fibroblasts treated with 
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exosomes of irradiated PBMCs seemed to display the fastest scratch closure by fibroblast 

proliferation.63 

Wagner et al further developed this concept and tried to test the possible angiogenic potential, 

of the exosomes and lipids and proteins and compared it to the secretome of co-cultured, 

irradiated PBMC subtypes in an ex vivo aortic ring assay.286 The results were other than 

expected, as the formation of new vessels was most prominent after stimulation with the whole 

secretome, the exosomes, lipids or proteins alone came not even close to this effect.286 

Additionally an AP-1 promoter and HSP-27 phosphorylation assay was done with the 

subfractions and as a control all isolated exosomes, lipids and proteins were pooled again and 

used as stimulation.286 Astonishingly the pooled subfractions could not sum up to the effect the 

supernatant of whole PBMCs achieved in the activation of AP-1 and HSP-27286. These results 

may indicate a possible synergistic effect.286 But the main actor of this effect is still not found. 

Our working group tried to break the effect of APOSEC down to one effective composite. 

Wagner and Beer et al. analyzed the impact of proteins, lipids, exosomes and microvesicles, 

yet without finding a sole actor of the pro-angiogenic effect.63,286  

To further investigate the source of the angiogenic capacity of the secretome of irradiated (and 

therefore apoptotic and necroptotic) PBMCs is the aim of this thesis. As elaborated in the 

following two papers we sought to gain deeper insight in the mechanisms of action of this 

highly auspicious treatment possibility for enhanced wound healing.  
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8.8 Aims of this thesis 

As previously shown by our working group the secretome of PBMC has the potential to 

enhance wound healing in a murine and porcine model.57,89 Thus, the first aim of this thesis 

was to unravel the cell type of PBMCs, which is responsible for this pro-angiogenic, wound 

healing capacity. Moreover the cytokine and chemokine composition of T-cells, B-cells, NK-

cells and monocytes in that context, were never investigated before. 

The changes in the gene signature were further determined via micro-array analysis as well 

as on protein level via protein assays of the supernatant.  

This thesis aims to discover possible differences on the PBMC secretome, according to the 

initiated cell death. 

We sought to analyse the changes in gene and protein expression, resulting from apoptosis 

and necroptosis in PBMCs and the changes in its paracrine effects.  

The last and most important aim of the study is to test, if the application of autologous 

APOSEC, that was produced under good manufacturing practice (GMP)-guidelines on human 

skin is safe and does not lead to adverse events. This was observed in a clinical phase I study. 
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9 CHAPTER TWO: Results 

9.1 Prologue 

In previous works of our working group known PBMCs showed only low concentration of pro-

apoptotic factors, such as TNF-α, soluble CD40 ligand (sCD40L), soluble FAS ligand (sFASL), 

and sFAS, after irradiation.90 Blocking them did not result in preventing apoptosis in highly 

purified CD4+ T-cells.90 These findings lead to the idea, that not only apoptosis, but another 

cell death could be triggered in PBMC after irradiation. 

In the study of Kasiri et al. we tested different types of cell death induced by irradiation.290 Due 

to the help and experience of the guest scientist Pietkiewicz and the new technological 

possibilities of the Image Stream, we were able to detect necroptosis as a consequence of 

ionizing irradiation.291 

We further wanted to observe what happens to the already known angiogenic potential of 

PBMC secretome, if apoptosis or necroptosis is inhibited. Would this APOSEC or NECROSEC 

will have similar angiogenic potential?  
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9.2 Paper 1 
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Supplementary Figure 1 

 

Supplementary Figure 1. Purity of isolated PBMC subsets. Polychromatic flow cytometric 

analysis for purified PBMC subsets. a) Forward-sidescatter dot plot of PBMCs. b) Purified 

natural killer cells expressing CD56 (99.4% cell purity). c) Purified B-cells expressing CD19 

(93.3% cell purity). d) Purified monocytes expressing CD14 (97.3 cell purity). e) Purified CD4 

T-cells expressing CD3 (95.4%). f) Purified CD8 T-cells expressing CD3 (98% cell purity). 

One experiment out of three is shown.  

 



53 

 

Supplementary Figure 2 

 

Supplementary Figure 2. Preparation of aortic rings. a) Mice were sacrificed via cervical 

dislocation, the rib cage was opened, heart and lungs were removed. c) Thoracic aorta including 

periaortic adipose tissue was carefully dissected from vertebrae. c) Adipose tissue was 

surgically removed and the aorta was cut in 1 mm-thick rings.  
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Supplementary Figure 3 

 

 

 

Supplementary Figure 3. Cytokine protein array of -irradiated PBMCs. a) Membrane 
arrays detecting 102 cytokines and cytokine-related proteins were incubated with 

supernatant from 25x106 -irradiated PBMCs 24 hours after incubation. b) Legend for spotted 
antibodies. 
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Supplementary Figure 4 

 

Supplementary Figure 4. Representative image stream micrographs of viable, apoptotic, and 

necroptotic cells. Viable cells were morphologically characterised by their intact cell shape in 
the bright field (BF) channel and by the lack of annexin and propidium iodide (PI). Apoptotic 
cells showed decreased cell volume, exposed Annexin on the surface, and displayed nuclear 
fragmentation (PI positive). Cells undergoing necroptosis were enlarged, indicating 
cytoplasmic swelling and the nucleus remained non-fragmented.  
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Supplementary Figure 5 

 

Supplementary Figure 5. Array of apoptosis-related proteins secreted by -irradiated 
PBMCs.          a) Membrane arrays detecting 35 apoptosis-related proteins were incubated 

with cell lysates from 25x106 -irradiated PBMCs 24 hours after exposure. b) Plots of PBMCs, 
NK-cells, monocytes, CD4 T-cells, CD8 T-cells, and B-cells are shown.  Table lists the proteins 
analysed. 
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Supplementary Figure 6 

 

 

Supplementary Figure 6. TNFα and zVAD induce necroptosis in PBMCs. PBMCs were 
stimulated with a combination of TNFα and zVAD and cultivated for up to 24 hours. Co-

incubation of PBMCs with TNF and zVAD abrogated caspase-3 cleavage and lead to 
phosphorylation of RIPK3 and MLKL. After stimulation with TNF and zVAD phosphorylated 
RIPK3 was shown with 57 kDA displayed its peak after 2h, whereas the cleavage product seen 
after irradiation (Fig. 5) at 35kDA and 25kDA could not be detected, n=3.  
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Supplementary Figure 7 

 

Supplementary Figure 7. TNFα induces apoptosis and necroptosis in PBMCs which were 
inhibited by zVAD and necrostatin, respectively. a) Aortic rings were incubated with the 

secretome of -irradiated PBMCs together with freshly added zVAD, necrostatin or a 
combination of both for 3 days. Thereafter calcein (green dye) was added to label viable cells. 
Neither zVAD nor necrostatin significantly inhibited blood vessel sprouting in the aortic ring 

assay. Scale bar, 200 µm. n=3. b)  Endothelial cells were incubated with the secretome of -
irradiated PBMCs together with freshly added zVAD and necrostatin for 3 hours after 
starvation overnight. Cell Gro medium was used as negative control. The tube formation was 
diminished in the medium control, yet the fresh addition of zVAD and necrostatin had no 
effect on endothelial outgrowth compared to the PBMC secretome. Scale bar, 200 µm. c) 
PBMCs were stimulated with combinations of TNFα, zVAD and necrostatin and were cultivated 
for 24 hours. Stimulation with TNFα resulted in cleavage of caspase-3 (c-cas 3). Co-incubation 

of PBMCs with TNF and zVAD abrogated caspase-3 cleavage and lead to phosphorylation 
MLKL while co incubation with necrostatin favored caspase-3 cleavage. n=3 
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9.3 Interlude 

An increasing number of chronic wound healing deficiencies are counted in the US (estimated 

6,5 million patients) due to the rising numbers of diabetes.7,292 These chronic non-healing 

ulcers lead to increasing economic burden, as the treatment of one diabetic ulcer costs nearly 

50.000$.7,292,293 These great expenses illustrate an unmet need in patient care. 

For an adequate tissue repair and wound healing many factors such as growth factors, 

inflammatory cells, oxygen and blood perfusion to deliver these factors to the required area 

are needed.294,295 In diabetic patients the vasculature is often impaired and further aggravating 

the dysfunctional healing process.294,296 As we have showed previously, the secretome of 

irradiated PBMC could provide enhanced angiogenesis and growth factors/cytokines 

necessary to improve wound healing.57,89,281,282,297  

Yet for every promising therapeutic compound various stages to proof safety and tolerability 

have to be fulfilled. Therefore, the safe application of autologous APOSEC (which was 

produced according to current GMP guidelines) was tested in a clinical phase I study.  
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9.4 Paper 2 
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Supplementary 

Adverse event screening 

Participants were examined using laboratory tests, ECG and physical examination. 

The physical examination included an examination of the abdomen, head, ears, eyes, nose, 

throat, neck, neurological and psychiatric status, as well as pulmonary, cardiovascular, skeletal, 

muscular, urogenitary tract; measurement of height and weight, BMI. The vital signs 

measurement included the assessment of the systolic and diastolic pressure, as well as the pulse 

rate.  

Regarding the general physical examinations, no abnormalities were found at any of the 

screened subjects.  

 

The standard 12-lead ECG (25mm/s and 0.1mV/mm) was recorded after at least 5 minutes 

rest at screening visit via Siemens Megacart or GE MAC 1200ST. For 5 subjects ECG 

abnormalities were detected at the screening, but none was regarded as clinical significant by 

the investigator team. 

 
Hematology parameters included the determination of erythrocytes, leukocytes, hemoglobin, hematocrit, thrombocytes, 

MCV, MCH, MCHC, PTT and aPTT. The levels were obtained at screening and the follow-up for 

CRF Nr. 01,02,03,04,05,06,07,08,10,11,12,13,14). No abnormalities were detected at any of the 

subjects.  

Serum chemistry included the determination of sodium, potassium, total protein, albumin, chloride, BUN, creatinine, 

glucose, ASAT, ALAT, AP and gamma GT. The levels were obtained at screening and the follow-up 

for CRF Nr. 01, 02, 03, 04, 05, 06, 07, 08, 10, 11, 12, 13, 14). No abnormalities were detected at any of 

the subjects. 

Virology included the determination of HBs Ag, HCV Ab and HIV-1/2 Ab levels. No latent or 

active infection was detected in any of the screened subjects. 

Urine analysis included the determination of pH, leukocytes, nitrite, protein, glucose and 

blood. No abnormalities were detected at any of the screened subjects regarding the pH 

Analysis, moreover all revealed negative results with respect to the parameters measured at 

the screening.
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Supplementary Tables 

Supplementary Table S1. Disposition of subjects according to dose group 

CRF 

Nr. 

Dose group Treatment 

proximal 

Treatment 

distal 

Randomization 

code 

Status  Drop-out  Reason 

1 A (12.5×106 PBMC/ml) Placebo Verum DR2 Drop-out Day 1 Primary reason for discontinuation is deviation in IMP production (Sponsor decision)   

Evaluation of test treatment on day 1:   Area proximal: 01: faint, minimal erythema. 

area distal: 03: erythema with induration or vesicles, hives, no itching, no pain, no 

burning 

2 A (12.5×106 PBMC/ml) Verum Placebo DR1 Drop-out Day 1 Primary reason for discontinuation is deviation in IMP production (Sponsor decision)     

Evaluation of test treatment on day 1:  Area proximal: 0: hives without itching, no 

erythema. Area distal: 0: no visible reaction 

3 A (12.5×106 PBMC/ml) Verum* Placebo* DR2* Completed  n.a. n.a. 

4 A (12.5×106 PBMC/ml) Placebo* Verum* DR1* Completed n.a. n.a. 

5 A (12.5×106 PBMC/ml) Verum Placebo DR1 Completed n.a. n.a. 

6 A (12.5×106 PBMC/ml) Verum Placebo DR1 Completed n.a. n.a. 

7 A (12.5×106 PBMC/ml) Placebo Verum DR2 Drop-out Day 1 Evaluation of test treatment on day 1:  Area proximal: 01 faint, minimal erythema 

8 A (12.5×106 PBMC/ml) Verum  Placebo DR1 Completed n.a. n.a. 

9 B (25.0×106 PBMC/ml) n.a. n.a. n.a. Not 

included 

Preliminary 

exclusion 

Due to a screening failure, the patient was preliminarily excluded before test 

treatment 

10 B (25.0×106 PBMC/ml) Placebo Verum DR2 Completed n.a. n.a. 

11 B (25.0×106 PBMC/ml) Placebo Verum DR2 Completed n.a. n.a. 

12 B (25.0×106 PBMC/ml) Verum  Placebo DR1 Completed n.a. n.a. 
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Supplementary Table S1. Disposition of subjects according to dose group (continued) 

13 B (25.0×106 PBMC/ml) Verum  Placebo DR1 Completed n.a. n.a. 

14 B (25.0×106 PBMC/ml) Verum  Placebo DR1 Completed n.a. n.a. 

Supplementary Table S1  

Summary of all study subjects and their treatment randomization. Dose group A represents the low-dose group. Dose group B was the high-dose group. Verum was applied 
on the proximal artificial wound and placebo on the distal wound when coded with DR1. DR2 coded participants had an application of verum to the distal wound and placebo 
to the proximal wound. The double-blinded study randomization was performed by the AKH pharmacy. 

 *Subjects CRF Nrs. 3 and 4 were treated vice versa from the assigned randomization code; this alteration occurred throughout the study. The outcome of the randomizer 
web application revealed code DR1 for treatment at distal and code DR2 for treatment at proximal. The AKH pharmacy determined to administer placebo to the randomized 
location.   
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Supplementary Table S2. Index of adverse events 

  
 MedDRA Coding 

          

CRF# Description Applied 

IMP 

LLT 

MedDRA 

Coding 

LL

T 

SOC SOC Comment/ 

Query 

Outcome Severity Unexpected Serious Drug 

treatment 

Action Relation 

1 Faint, minimal 

erythema area 

proximal 

Placebo 

Dose 

group A 

Application 

site erythema 

100

030

41 

Skin and 

subcutaneous 

tissue disorders 

1004

0785 

Comment: 

graded as local 

tolerability 1 

No follow-up Not assessed due to grading as local 

tolerability via score 
No Premature study 

discontinuation1 

Not assessed due 

to grading as 

local 

tolerability via 

score 

1 Erythema with 

induration or 
vesicles, hives 

no itching, no 

pain, no burning 

area distal 

Verum 

Dose 

group A 

Application 

site erythema 

100

030

41 

Skin and 

subcutaneous 

tissue disorders 

1004

0785 

Comment: 

graded as local 

tolerability 3 

No follow-up Not assessed due to grading as local 

tolerability via score 
No Premature study 

discontinuation1 

Not assessed due 

to grading as 
local 

tolerability via 

score 

2 Hives without 
itching, no 

erythema area 

proximal 

Verum 

Dose 

group A 

Hives 100
201

97 

Skin and 
subcutaneous 

tissue disorders 

1004

0785 

Comment: 
graded as local 

tolerability 0 

No follow-up Not assessed due to grading as local 

tolerability via score 

No Premature study 

discontinuation1 

Not assessed due 
to grading as 

local 

tolerability via 

score 

4 Redness right 

upper arm at  

the patch area 

Not 

assignable 

to verum 

or placebo 

Dose 

group A 

Application 

site redness 

100

030

58 

Skin and 

subcutaneous 

tissue disorders 

1004

0785 

Comment: 

upper right arm 
Resolved Mild Yes No No No action Unlikely 

7 Sore throat Not 

assignable 

to verum 

or placebo 

Dose 

group A 

Sore throat 100

413

67 

Respiratory, 

thoracic, and 

mediastinal 

disorders 

1003

8738 

Comment: Not 

applicable 
Resolved Mild Yes No No No action Unrelated 
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Supplementary Table S2. Index of adverse events (continued) 

7 Erythema in area 

proximal 
Placebo 

Dose 

group A 

Application 

site erythema 

100

030

41 

Skin and 

subcutaneous 

tissue disorders 

1004

0785 

Comment: 

proximal; 

Graded as local 

tolerability 

grade 1  

Resolved Mild Yes No No Premature study 

discontinuation, no 

further action 

Probably 

(documented as 

both adverse 
events and local 

tolerability 

effect). 

8 Distal wound 
opened  

and bleeding  

Placebo 

Dose 

group A 

Wound 

bleeding 

100
513

86 

Injury, poisoning, 
and procedural 

complications 

1002

2117 

Comment: 

distal 

Resolved Mild Yes No No 01.05.2015: Cleaning 
and application of 

dressing 

04.05.2015:  Photo 
documentation 

Assessment: slough dry 
and application of 

dressing 

Unrelated 

 

8 Two hematomas 

left upper arm 

around the 
puncture site of 

the local 

anesthetic 

Not 

assignable 

to verum 

or placebo 

Dose 

group A 

Injection site 

hematoma 

100

553

71 

General disorders 

and administration 

site conditions 

1001

8065 

Comment: left 

upper arm 
Resolved Mild Yes No No No action Unrelated 

11 Sensitivity of 

skin by  
Steri Strips in the 

dressing area 

proximal 

Placebo 

Dose 

group B 

Adhesive 

plaster 

sensitivity 

100

012

90 

Skin and 

subcutaneous 

tissue disorders 

1004

0785 

Comment: 

proximal 

Resolved Mild Yes No No No action Unrelated 

14 Muscle tension 

left arm 

Not 

assignable 
to verum 

or placebo 

Dose 

group B 

Muscle tension 100

705

41 

Musculoskeletal 

and connective 

tissue disorders 

1002

8395 

Comment: left 

arm 

Resolved Mild Yes No Transfer to 

neurologis

t 

No action Unrelated 

14 Itching distal 

wound 

Placebo 

Dose 

group B 

Wound itching 100
628

73 

Injury, poisoning, 
and procedural 

complications 

1002

2117 

Comment: 

distal 

Resolved Mild Yes No No No action Probably 
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14 Itching proximal 

wound 

VerumDo

se group B 
Wound itching 100

628

73 

Injury, poisoning, 

and procedural 

complications 

1002

2117 

Comment: 

proximal 
Resolved Mild Yes No No No action Probably 

Supplementary Table S2  

Summary of all adverse events and attribution to verum and placebo. CRF#: ID of the study participants. In the dose group A, the low dose was applied, and in 
dose group B, the high dose of APOSECTM was applied. Tolerability was quantified using a 4-point local tolerability assessment scale (0=no visible reaction; 1=faint, 
minimal erythema; 2=erythema; 3=erythema with induration or vesicles; 4=severe erythema with induration, vesicles, or bullae or pustules and/or 
erosion/ulceration). 
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Supplementary Table S3. Demographic characteristics of the study participants 

eCRF 
Nr. Visit date 

ICF 
signed ICF date 

Screening 
Nr. Birth year Gender Ethnicity Alcohol consumption 

Alcohol units 

[units/week]* Smoking 

Smoking 
quantity 
[cigarettes/day] 

1 13 Feb 2015 Yes 13 Feb 2015 17 1986 Male Caucasian Yes 1 Non-smoker 0 

2 09 Feb 2015 Yes 09 Feb 2015 16 1984 Male Caucasian No 0 Non-smoker 0 

3 26 Feb 2015 Yes 26 Feb 2015 21 1988 Male Caucasian Yes 1 Non-smoker 0 

4 20 Feb 2015 Yes 20 Feb 2015 18 1989 Male Caucasian No 0 Non-smoker 0 

5 23 Feb 2015 Yes 23 Feb 2015 19 1994 Male Caucasian No 0 Non-smoker 0 

6 24 Feb 2015 Yes 24 Feb 2015 20 1989 Male Caucasian Yes n.a. Non-smoker 0 

7 02 Mar 2015 Yes 02 Mar 2015 22 1987 Male Caucasian Yes 2 Smoker 20 

8 06 Mar 2015 Yes 06 Mar 2015 25 1990 Male Caucasian Yes 3 Non-smoker 0 

10 02 Mar 2015 Yes 02 Mar 2015 23 1985 Male Caucasian No 0 Ex-smoker 20 

11 25 Mar 2015 Yes 25 Mar 2015 27 1989 Male Caucasian Yes 1 Smoker 4 

12 27 Mar 2015 Yes 27 Mar 2015 28 1983 Male Caucasian No 0 Non-smoker 0 

13 09 Apr 2015 Yes 09 Apr 2015 30 1987 Male Caucasian No 0 Smoker 7 

14 09 Apr 2015 Yes 09 Apr 2015 29 1988 Male Caucasian No 0 Smoker 10 

Supplementary Table S3 

Summary of all volunteers, depicting anonymization ID during the study (eCRF Nr.), date of signing the informed written consent (ICF), screening number, age, gender, 
ethnicity, alcohol consumption, and smoking characteristics.  
*1 unit equals half a liter of beer, 200 mL wine, or 50 mL of spirits.  
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Supplementary Table S4. Time course of the maximum wound  diameter for both dose groups 

Day Group Statistic Verum Placebo Difference 

Day 1 Group A Mean (SD) 5.14 (0.45) 5.11 (0.28) 0.03 (0.46) 
  Median (Q1 to Q3) 4.94 (4.93 to 4.98) 5.07 (4.92 to 5.24) 0.02 (-0.09 to 0.09) 
  Min to Max 4.91 to 5.94 4.82 to 5.52 -0.59 to 0.7 
 Group B Mean (SD) 5.21 (0.31) 5.31 (0.37) -0.09 (0.58) 
  Median (Q1 to Q3) 5.09 (5.07 to 5.19) 5.08 (5.08 to 5.49) -0.11 (-0.4 to 0.11) 
  Min to Max 4.97 to 5.75 5.01 to 5.88 -0.81 to 0.74 

Day 2 Group A Mean (SD) 5.24 (0.5) 5.03 (0.19) 0.21 (0.42) 
  Median (Q1 to Q3) 5.13 (4.95 to 5.66) 5.03 (5.01 to 5.14) 0.4 (-0.08 to 0.52) 
  Min to Max 4.64 to 5.84 4.73 to 5.24 -0.37 to 0.6 
 Group B Mean (SD) 5.08 (0.07) 4.97 (0.37) 0.11 (0.36) 
  Median (Q1 to Q3) 5.07 (5.05 to 5.07) 5 (4.86 to 5.24) 0.14 (-0.17 to 0.2) 
  Min to Max 5 to 5.2 4.41 to 5.35 -0.28 to 0.64 

Day 3 Group A Mean (SD) 4.9 (0.51) 4.88 (0.15) 0.03 (0.53) 
  Median (Q1 to Q3) 5.09 (4.45 to 5.16) 4.85 (4.79 to 4.99) 0.03 (-0.25 to 0.37) 
  Min to Max 4.3 to 5.52 4.7 to 5.06 -0.69 to 0.67 

 Group B Mean (SD) 5.06 (0.11) 4.81 (0.31) 0.25 (0.32) 
  Median (Q1 to Q3) 5.04 (5.01 to 5.05) 4.83 (4.66 to 4.93) 0.32 (0.14 to 0.39) 
  Min to Max 4.97 to 5.25 4.4 to 5.24 -0.23 to 0.64 

Day 4 Group A Mean (SD) 4.94 (0.35) 4.76 (0.18) 0.17 (0.3) 
  Median (Q1 to Q3) 4.94 (4.8 to 5.22) 4.78 (4.62 to 4.89) 0.25 (-0.09 to 0.39) 
  Min to Max 4.43 to 5.29 4.55 to 4.97 -0.19 to 0.51 
 Group B Mean (SD) 4.86 (0.06) 4.64 (0.27) 0.23 (0.29) 
  Median (Q1 to Q3) 4.85 (4.84 to 4.86) 4.58 (4.43 to 4.79) 0.38 (0.02 to 0.43) 
  Min to Max 4.81 to 4.96 4.37 to 5.02 -0.18 to 0.48 

Day 5 Group A Mean (SD) 4.66 (0.33) 4.65 (0.21) 0.02 (0.22) 
  Median (Q1 to Q3) 4.59 (4.44 to 4.87) 4.6 (4.47 to 4.77) -0.07 (-0.16 to 0.12) 
  Min to Max 4.29 to 5.12 4.45 to 4.94 -0.16 to 0.35 
 Group B Mean (SD) 4.39 (1.06) 4.44 (0.44) -0.05 (1.42) 
  Median (Q1 to Q3) 4.87 (4.76 to 4.89) 4.56 (4.08 to 4.57) 0.37 (0.32 to 0.68) 
  Min to Max 2.49 to 4.93 3.95 to 5.05 -2.56 to 0.92 

Day 6 Group A Mean (SD) 4.48 (1.3) 4.61 (0.15) -0.14 (1.35) 
  Median (Q1 to Q3) 4.86 (4.66 to 5.32) 4.57 (4.54 to 4.73) 0.44 (0.12 to 0.52) 
  Min to Max 2.21 to 5.33 4.42 to 4.8 -2.52 to 0.76 
 Group B Mean (SD) 4.82 (0.13) 4.41 (0.31) 0.42 (0.31) 
  Median (Q1 to Q3) 4.77 (4.72 to 4.9) 4.33 (4.16 to 4.63) 0.56 (0.08 to 0.68) 
  Min to Max 4.71 to 5.01 4.09 to 4.82 0.08 to 0.68 

Day 7 Group A Mean (SD) 4.31 (1.19) 4.45 (0.3) -0.15 (1.04) 
  Median (Q1 to Q3) 4.8 (4.36 to 4.98) 4.45 (4.21 to 4.49) 0.22 (-0.13 to 0.53) 
  Min to Max 2.24 to 5.15 4.18 to 4.93 -1.94 to 0.59 
 Group B Mean (SD) 4.61 (0.12) 4.33 (0.24) 0.28 (0.29) 
  Median (Q1 to Q3) 4.66 (4.48 to 4.71) 4.41 (4.13 to 4.46) 0.3 (0.2 to 0.35) 
  Min to Max 4.48 to 4.72 4.05 to 4.62 -0.14 to 0.67 

Supplementary Table S4 

Descriptive statistics of the maximum diameter. Mean diameter and standard deviation (SD) as well as 
median, quantiles, minima and maxima in mm for application days 1–7, separated for dose group A 
(low-dose group) and group B (high-dose group).  
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Supplementary Table S5. Time course of the minimum wound diameter for both dose groups 

Day Group Statistic Verum Placebo Difference 

Day 1 Group A Mean (SD) 4.31 (0.3) 4.28 (0.41) 0.03 (0.43) 
  Median (Q1 to Q3) 4.26 (4.25 to 4.5) 4.47 (4.13 to 4.51) -0.01 (-0.01 to 0.12) 
  Min to Max 3.88 to 4.66 3.63 to 4.67 -0.59 to 0.63 
 Group B Mean (SD) 4.6 (0.11) 4.67 (0.24) -0.07 (0.27) 
  Median (Q1 to Q3) 4.56 (4.55 to 4.69) 4.69 (4.54 to 4.78) 0 (-0.04 to 0.01) 
  Min to Max 4.47 to 4.74 4.36 to 4.99 -0.52 to 0.2 

Day 2 Group A Mean (SD) 4.29 (0.62) 4.28 (0.09) 0.01 (0.57) 
  Median (Q1 to Q3) 4.07 (3.82 to 4.66) 4.33 (4.27 to 4.33) -0.2 (-0.41 to 0.31) 
  Min to Max 3.72 to 5.19 4.13 to 4.35 -0.51 to 0.86 
 Group B Mean (SD) 4.38 (0.16) 4.04 (0.4) 0.34 (0.49) 
  Median (Q1 to Q3) 4.48 (4.25 to 4.49) 4.01 (3.77 to 4.25) 0.48 (0.27 to 0.48) 
  Min to Max 4.18 to 4.52 3.58 to 4.61 -0.43 to 0.9 

Day 3 Group A Mean (SD) 4.04 (0.56) 4.21 (0.22) -0.18 (0.4) 
  Median (Q1 to Q3) 3.86 (3.54 to 4.62) 4.32 (4.13 to 4.37) -0.32 (-0.46 to 0.23) 
  Min to Max 3.53 to 4.64 3.86 to 4.39 -0.6 to 0.27 
 Group B Mean (SD) 4.21 (0.22) 4.08 (0.39) 0.13 (0.45) 
  Median (Q1 to Q3) 4.24 (4.2 to 4.31) 3.82 (3.79 to 4.33) 0.02 (-0.09 to 0.52) 

  Min to Max 3.84 to 4.44 3.79 to 4.65 -0.45 to 0.65 
Day 4 Group A Mean (SD) 4.03 (0.59) 4.09 (0.29) -0.06 (0.38) 

  Median (Q1 to Q3) 3.88 (3.82 to 4.59) 4.15 (3.83 to 4.19) 0.05 (-0.33 to 0.14) 
  Min to Max 3.22 to 4.63 3.78 to 4.49 -0.56 to 0.4 
 Group B Mean (SD) 4.17 (0.3) 3.98 (0.34) 0.19 (0.45) 
  Median (Q1 to Q3) 4.2 (4.11 to 4.34) 3.8 (3.8 to 4) 0.4 (-0.1 to 0.48) 
  Min to Max 3.7 to 4.48 3.72 to 4.56 -0.45 to 0.62 

Day 5 Group A Mean (SD) 3.85 (0.42) 4.01 (0.25) -0.16 (0.39) 
  Median (Q1 to Q3) 3.6 (3.57 to 4.27) 3.86 (3.86 to 4.1) -0.27 (-0.4 to -0.14) 
  Min to Max 3.46 to 4.35 3.84 to 4.41 -0.5 to 0.49 
 Group B Mean (SD) 3.69 (0.93) 3.69 (0.38) 0 (1.31) 
  Median (Q1 to Q3) 3.99 (3.66 to 4.34) 3.6 (3.47 to 3.66) 0.33 (0.06 to 0.89) 
  Min to Max 2.1 to 4.36 3.37 to 4.33 -2.23 to 0.97 

Day 6 Group A Mean (SD) 3.44 (1.02) 3.95 (0.16) -0.52 (1.01) 
  Median (Q1 to Q3) 3.4 (3.35 to 4.14) 4.03 (3.91 to 4.04) -0.35 (-0.51 to 0.05) 
  Min to Max 1.82 to 4.47 3.7 to 4.09 -2.21 to 0.43 
 Group B Mean (SD) 3.93 (0.24) 3.69 (0.42) 0.24 (0.53) 
  Median (Q1 to Q3) 3.99 (3.81 to 4.07) 3.66 (3.34 to 3.71) 0.15 (-0.13 to 0.73) 
  Min to Max 3.58 to 4.18 3.34 to 4.38 -0.39 to 0.84 

Day 7 Group A Mean (SD) 3.41 (1.06) 3.89 (0.42) -0.47 (0.84) 
  Median (Q1 to Q3) 3.62 (3.3 to 3.96) 3.95 (3.65 to 3.96) -0.07 (-0.33 to 0) 
  Min to Max 1.69 to 4.5 3.37 to 4.5 -1.96 to 0 
 Group B Mean (SD) 3.91 (0.34) 3.62 (0.35) 0.29 (0.61) 
  Median (Q1 to Q3) 3.94 (3.65 to 4.2) 3.52 (3.48 to 3.61) 0.33 (-0.03 to 0.72) 
  Min to Max 3.49 to 4.27 3.29 to 4.22 -0.57 to 0.98 

Supplementary Table S5 

Descriptive statistics of the minimum diameter. Mean diameter and standard deviation (SD) as well as 
median, quantiles, minima and maxima in mm for application days 1–7, separated for dose group A 
(low-dose group) and group B (high-dose group).  
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Supplementary Table S6. Time course of the wound area for both dose groups 

Day Group Statistic Verum Placebo Difference 

Day 1 Group A Mean (SD) 16.88 (2.15) 16.64 (1.09) 0.25 (1.87) 
  Median (Q1 to Q3) 16.32 (16.19 to 17.69) 16.8 (16.16 to 17.6) 0.09 (0.03 to 1.31) 
  Min to Max 14.2 to 20.02 15.01 to 17.62 -2.6 to 2.4 
 Group B Mean (SD) 18.5 (1.11) 19.01 (1.78) -0.51 (2.36) 
  Median (Q1 to Q3) 18.55 (17.61 to 18.56) 18 (17.89 to 20.93) 0.32 (-2.38 to 0.56) 
  Min to Max 17.52 to 20.28 17.29 to 20.96 -3.44 to 2.39 
Day 2 Group A Mean (SD) 16.51 (3.8) 16.36 (1) 0.15 (3.34) 
  Median (Q1 to Q3) 14.32 (13.84 to 18.93) 16.44 (16.27 to 16.72) -0.49 (-2.6 to 2.66) 
  Min to Max 13.45 to 22.03 14.81 to 17.56 -3.27 to 4.47 
 Group B Mean (SD) 16.48 (0.94) 15.05 (2.48) 1.43 (2.71) 
  Median (Q1 to Q3) 15.89 (15.79 to 17.48) 14.04 (13.62 to 16.07) 1.85 (1.41 to 3.07) 
  Min to Max 15.71 to 17.53 12.64 to 18.88 -3.09 to 3.91 
Day 3 Group A Mean (SD) 14.71 (3.13) 15.54 (0.93) -0.83 (2.65) 
  Median (Q1 to Q3) 13.71 (12.52 to 17.97) 15.53 (14.85 to 16.04) -1.14 (-3.17 to 1.16) 
  Min to Max 11.32 to 18.05 14.49 to 16.81 -3.52 to 2.52 
 Group B Mean (SD) 15.74 (1.32) 14.33 (2.15) 1.41 (2.47) 
  Median (Q1 to Q3) 16.19 (15.82 to 16.59) 13.58 (13.53 to 14.56) 2.03 (-0.13 to 3.1) 
  Min to Max 13.45 to 16.63 12.13 to 17.84 -2.02 to 4.06 
Day 4 Group A Mean (SD) 15.14 (3.11) 14.41 (1.67) 0.73 (2.54) 
  Median (Q1 to Q3) 13.09 (13.06 to 18.22) 13.88 (13.82 to 14.3) -0.31 (-0.79 to 0.98) 
  Min to Max 12.5 to 18.85 12.81 to 17.24 -1.24 to 5.03 
 Group B Mean (SD) 15.1 (0.98) 13.95 (2) 1.15 (2.2) 
  Median (Q1 to Q3) 15.4 (15.02 to 15.47) 13.13 (12.78 to 13.61) 1.79 (0.75 to 2.69) 
  Min to Max 13.5 to 16.11 12.75 to 17.48 -2.46 to 2.98 
Day 5 Group A Mean (SD) 13.51 (2.55) 13.76 (1.45) -0.25 (2) 
  Median (Q1 to Q3) 12.19 (11.95 to 15.54) 13.23 (13.04 to 13.76) -0.69 (-1.28 to -0.35) 
  Min to Max 10.97 to 16.88 12.54 to 16.23 -2.07 to 3.12 
 Group B Mean (SD) 14.69 (1.5) 12.68 (2.61) 2.01 (2.77) 
  Median (Q1 to Q3) 15.04 (14.26 to 15.92) 11.99 (11.51 to 12.63) 2.75 (-0.32 to 3.05) 
  Min to Max 12.31 to 15.92 10.2 to 17.06 -1.14 to 5.72 
Day 6 Group A Mean (SD) 13.95 (2.89) 13.21 (1.19) 0.74 (2.09) 
  Median (Q1 to Q3) 12.22 (11.85 to 16.67) 13.1 (12.87 to 13.35) 0.13 (-0.65 to 2.48) 
  Min to Max 11.5 to 17.5 11.72 to 15.02 -1.6 to 3.32 
 Group B Mean (SD) 14.05 (1.5) 12.33 (2.33) 1.72 (3.02) 
  Median (Q1 to Q3) 14.12 (13.29 to 14.18) 11.9 (11.2 to 12) 2.09 (0.29 to 2.22) 
  Min to Max 12.29 to 16.36 10.25 to 16.3 -2.12 to 6.11 
Day 7 Group A Mean (SD) 13.12 (2.8) 12.98 (2.5) 0.14 (1.58) 
  Median (Q1 to Q3) 12.11 (11.97 to 14.28) 12.96 (11.82 to 13.03) 0.37 (-0.99 to 1.25) 
  Min to Max 9.94 to 17.3 10.15 to 16.93 -1.88 to 1.96 
 Group B Mean (SD) 12.94 (1.62) 12.02 (1.66) 0.92 (2.98) 
  Median (Q1 to Q3) 12.58 (12.1 to 13.97) 11.55 (11.08 to 12.51) 1.5 (-1.57 to 2.42) 
  Min to Max 10.94 to 15.1 10.32 to 14.63 -2.53 to 4.78 

Supplementary Table S6 

Descriptive statistics of the wound area in mm2. Mean area and standard deviation (SD) as well as 
median, quantiles, minima and maxima in mm2 for application days 1–7, separated for dose group A 
(low-dose group) and group B (high-dose group).  
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Supplementary Methods 

 

Supplementary Fig. S1  

Depiction of the pacer (CASTEL-COP-DIGI, CASTEL-L, Novoflex, Germany) with the camera, in a 
re-enactment. The distance between the camera lens and the skin amounts to a constant 9,5cm. 

 

Immunohistochemical staining 

The specimen taken at day 1 before initiation of therapy depicts a baseline value. A punch 

biopsy was performed on day 1 (4mm) and day 7 (6mm).The tissue specimens were gathered, 

by the same surgeon. The depth of the biopsy was defined by the depth of the metal blade 

(7mm), as the granulation tissue has formed a depth of 7mm was enough to acquire the wound 

in its entirety on day 7. The tissue specimens were cut in half and one part was prepared for 

cryosection and the second part for paraffin-embedding. The samples were put into a sterile 

plastic tube and immediately frozen (for cryosection) or kept in formaldehyde 7.5% for 24 

hours. After 24h, sections were prepared for paraffin embedding, by standardized protocols of 

the Department of Dermatology (Medical University of Vienna). Immunohistochemical 

staining was performed according to the manufacturer’s protocol using the Avidin Biotin 

Peroxidase complex technique. CD45 (ab10558, Abcam, Cambridge, UK; dilution: 1:100) was 

stained on frozen sections and keratin 10 (PRB-159P, Covance Research Products Inc., Denver, 

PA, USA; dilution: 1:1000), factor VIII (A0082, DAKO, Santa Clara, CA, USA; dilution: 

1:1000), and podoplanin (clone: D2-40; 322M-15; Cell Marque Corporation, Rocklin, CA, 

USA; dilution: 1:50) were stained on formalin-fixed, paraffin-embedded sections. In brief, 

frozen tissue was embedded in OCT prior to sectioning and stored at -80°C. Tissue specimens 

were cut into sections 6–8 μm thick and fixed using 4% paraformaldehyde. Formalin-fixed, 

paraffin-embedded tissue specimens were cut into sections 4–6 μm thick and deparaffinized. 

The following steps were conducted on frozen as well as formalin-fixed, paraffin-embedded 

sections. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6.0. 

Endogenous peroxidase activity was quenched with 0.3% hydrogen peroxide. Sections were 

incubated with the appropriate primary antibody overnight at 4°C, followed by incubation with 

either anti-IgG mouse or anti-IgG rabbit secondary antibody (RPN1001V, Chalfont St. Giles, 

GB; BA-1000, Vector Laboratories, Burlingame, CA, USA) diluted in 10% sheep or goat 
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normal serum (sc-2488, Santa Cruz Biotechnology Inc., Dallas, TX, USA; X0907, DAKO, 

Santa Clara, CA, USA) for 30 min at room temperature. Slides were then incubated with ABC 

reagent (PK 4000, Vector Laboratories, Burlingame, CA, USA) for 30 min at room temperature. 

The reaction was visualized with AEC substrate (K3469, DAKO, Santa Clara, CA, USA) under 

the microscope and counterstained with hematoxylin (1.09253.500, Merck, Darmstadt, 

Germany). As negative controls, the primary antibody was omitted. Additionally, on formalin-

fixed, paraffin-embedded sections, hematoxylin–eosin staining was performed according to a 

standard protocol. 

Digital scanning of tissue sections was performed using an automated scanning microscope, 

TissueFAXs (TissueGnostics, Vienna, Austria). Tissue sections were rated by a blinded 

observer. Tissue sections from day 7 were divided into transition, wound, and healthy zones. 

The number of factor VIII–positive or podoplanin-positive vessels per cm2 (MVD) was counted 

at a magnification level of 20x. The effect of MVD by APOSEC low dose, APOSEC high dose, 

or placebo was evaluated at day 7 in wound area (as fold increase to day 1). The number of 

CD45+ cells per high power field was counted at a magnification level of 20× in wound area 

(as fold increase to day 1) and the percentage of CD45+ cells was calculated. 

Factor VIII APOSEC low dose vs. placebo (median fold increase [range]) (0.67 [0.20; 0.93] vs. 

1.24 [0.09; 3.33], p=0.44), Factor VIII APOSEC high dose vs. placebo (median [range]) (1.01 

[0.33; 1.48] vs. 0.84 [0.17; 1.49, p=0.63). No podoplanin vessels were found in the tissue 

specimens. No K10 positive epidermal layer in the wound area was found in any patient at day 

7.CD45 APOSEC low dose vs. placebo (median fold increase [range]) (4.03 [1.15; 8.92] vs. 

2.09 [0.77; 3.87], p=0.38), CD45 APOSEC high dose vs. placebo (median [range]) (1.58 [0.44; 

2.72] vs. 1.48 [0.21; 2.00, p=0.48) 
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10 CHAPTER THREE: Discussion 

 

Chronic non healing ulcers depict a field of unmet need, as these complex mechanisms are a 

multitude of processes concerning a successful wound healing.7 To gain an insight on the 

effect of irradiated PBMC secretome on wound healing, a lot of mechanisms of wound healing 

must be taken into consideration.   

This thesis aimed to elucidate 1) the role of regulated cell death on wound healing. 2) the role 

of various cell types of the immune system on wound healing and angiogenesis and 3) if the 

application of the irradiated PBMC-secretome is safe in human application. To conclude our 

findings and compare them to the known literature is the goal of this discussion.  

 

Apoptosis is known as orchestrated cell suicide, with the least destructive effect on surrounding 

cells, due to the blebbing of cell fragments without the rupture of the cell membrane and efflux 

of possible harmful cell compartments.298 To fully understand the importance of controlled cell 

death, one should have a look on the processes of uncontrolled cell migration and activation: 

If we take a deeper look on the inflammatory processes in wound healing, starting for example 

with neutrophils, that invade the wound area first. We will observe, that they produce pro-

inflammatory cytokines such as TNF-α and IL-1, which lead to enhanced activation of the 

immune system.298,299 If this process is out of control, the release of this cytokines result in a 

stress response, which is characterized by increased catecholamines and corticosteroids as 

in severe infections.298 This stress response is believed to play a role in e.g. acute respiratory 

distress syndrome/Sepsis, as activated neutrophils emigrate in the blood stream, reach the 

lungs and damage endothelial cells of the lung tissue and consequently the alveoli either.298 

Apoptosis on the other hand is necessary to regulate and break the circle of more and more 

activated and harmful neutrophils, which then are often eliminated by phagocytosis of 

macrophages.298,299 

In later stages of wound healing the amount of collagen is crucial to gain physiological wound 

healing, if collagen production is exaggerated, due to an imbalance of fibroblast apoptosis, 

hypertrophic scars and keloid formation are the results.298,300  
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When we have a look on a second important cell death: necroptosis, only a few studies are 

found to address this subject in wound healing. 

Necroptosis seems to be profusely present in chronic wounds.301 Surprisingly the literature 

depicts contradictory effects of necroptosis on wound healing. When it comes to wound 

healing, one question remains unanswered: programmed cell death friend or foe? 

One study observed, that necroptosis inflicted more oxidative stress on wounds via Silencing 

information regulator 2 related enzyme 3 (SIRT3) and even prolonged wound healing in 

diabetic mice.302,303  

As increased RIPK3 was found in excised hypertrophic murine and human scar tissue, Izumov 

et al believed, that fibroblasts were responsible for the higher RIPK3 levels.304 After stimulation 

of wound fibroblasts with Lipopolysaccharide (LPS) and TGF-β higher fluorescence was seen 

in an RIPK3-antibody fluorescence staining, compared to non-stimulated control fibroblasts.304 

Yet when isolating the cells and analyzing the gene expression level of RIPK3 via rtPCR, no 

difference between the control fibroblasts and wound fibroblasts could be detected.304 He 

speculated, that an epithelial-mesenchymal crosstalk between cells is necessary for fibroblasts 

to upregulate the expression of RIPK3.304 He also considered, that RIPK3 may not have a role 

in hypertrophic scar formation and that RIPK3 may have another function in wound repair.304  

Injarabian et al found interesting results regarding the role of necroptosis in wound healing. 

She observed, that the number of monocytes and macrophages decreased, when the wound 

matured from the inflammatory phase into the proliferatory phase.305 Especially Ly6Chigh drive 

inflammation and angiogenesis, both processes necessary for successful wound healing, but 

hyperergic and long lasting monocyte and macrophage acitivity may hinder wound closure in 

later phases.305 She suspected that the regulation to lower numbers of 

monocytes/macrophages was done with the induction of apoptosis and necroptosis.305 To test 

this hypothesis the authors created a Ripk3−/− mouse, which also lacks FADD, but only in 

monocytes and macrophages (Faddfl/flRipk3−/−Cx3cr1Cre/wt).305 In this model monocytes and 

macrophages were not capable to undergo extrinsic apoptosis and necroptosis.305 Excisional 

wounds were applied on these mice and controls, leading to higher numbers of monocytes and 

macrophages in the later phases of wound healing, proving that necroptosis is a major 

regulator of monocyte numbers.305 Furthermore the wound closure was significantly delayed 

without necroptosis and apoptosis in monocytes.305 The granulation tissue was less on day 7 

either, indicating decreased tissue remodeling in the presence of more monocytes and 

macrophages.305 Moreover excessive levels of TNF were found in the wound area of the 

double mutant mice.305 As the group suspected the TNF pathway responsible for this effect, 

they used a TNFR2-Inhibitor (Etanercept), which lead to normalization of wound healing.305 
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Leading to the conclusion, that a dysfunctional TNF receptor signaling leads to the decreased 

wound healing.305 Pure Ripk3−/− knock-out mice showed a similar wound healing, as the control 

mice.305  

This study shows, that different cell death mechanisms are important for regulating the 

adequate regeneration process. In this thesis we investigated, which cells are prone to 

necroptosis and apoptosis, after stimulation with γ-irradiation.297 PBMC as co-culture were 

least sensitive to the irradiation, displaying the highest number of living cells, compared to the 

natural killer cells, mostly showing necroptotic cell death.297 In monocytes we could find the 

most balanced proportion of apoptosis and necroptosis.297 These findings hint different 

pathways activated and the possibility of various individual receptors involved.  

Moreover we were able to show, that necroptosis is mediated via the TNFRSF1B receptor after 

irradiation.297 Whereas in wound healing an abundant amount of TNF-α activates TNF-receptor 

1, which which leads to activation of NF-κB, after recruiting TRADD, TRAF2/5 and among 

others RIPK1. 306 The TNF pathway is especially interesting regarding its role in wound healing. 

As a computational analysis done by Luthfiana et al. revealed a possible role in diabetic wound 

healing of Dolastatin 16 mediated via the TNF/ NF-κB pathway.306 As upon activation of NF-

κB the production of MMP-9 is upregulated, disturbing the reorganization of tissue architecture, 

whereas Dolastatin 16 could act as inhibitor of MMP-9.  

What surprised us, was that in our reporter gene assays the promoter activity of NF-κB was 

highest after application of irradiated PBMC supernatant.297 The stimulation with the apotptotic 

and necroptotic monocyte supernatant could not reach the same impact.297 This implicates 

cellular cross-talk between different cell populations, necessary to fully activate the NF-κB 

pathway.297 The consequence of this finding for wound healing needs to be addressed in 

further studies.297 Could this also play a role in the increased angiogenesis in the sprouting 

assays, which was highest after treatment with the PBMC supernatant, compared to those of 

pure monocyte cultures.297  

Furthermore the type of cell death mattered for the angiogenesis.297 As we have showed by 

blocking necroptosis and apoptosis by addition of necrostatin-1 and zVAD.297 After irradiation, 

the cells were cultured with the blocking agents for 24 hours and then the supernatant was 

used for stimulation of endothelial cells and aortic rings.297 Only the addition of necrostatin-1, 

which blocks necroptosis induction, significantly decreased the sprouting ability and the tube 

formation of endothelial cells.297 Intriguingly the fresh addition of necrostatin-1 into the 

sprouting assays and endotheial cell cultures, did not show differences on their angiogenic 

potential.297 Maybe the positive effects on angiogenesis are not the cells undergoing 
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programmed cell death, but the factors, that are secreted by them. So, the key to understand 

the effects of cell death may lie in the secreted factors of necroptotic cell death.  

The role of apoptosis in wound healing seemed to be limited to the eradication of damaged 

cells in the wounded area, to prevent exaggerated inflammation.298,307 Yet more and more 

studies find a paracrine effect of dying cells on the surrounding tissue.   

 

As dermal wound areas usually consist of a certain amount of dying cells, researchers are 

becoming more and more aware of this neglected, yet important cells and their paracrine 

effect.308,309 The secreted factors of dying, apototic cells affecting surrounding cells were 

labeled ‘‘metabolite secretome’’ by Medina et al.309 A further look on the impact of apoptotic 

cells took Li et al.310 He used  irradiated mouse embryonic fibroblasts (MEF) to simulate dying 

cells from wounded dermal tissue and observed their proliferative effect on firefly luciferase 

labeled neighboring cells.310 He then elucidated growth-promoting and proliferative effects on 

MSCs, epidermal keratinocyte progenitor cells and even neural stem cells.310 He assumed 

caspase 3 and caspase 7 as possible inducers of this positive effects and tested his hypothesis 

with single and double caspase deficient mice.310 He irradiated the caspase deficient MEFs 

and co-cultured them with wildtype fibroblasts, resulting in less cell proliferation, which was 

aggravated in the caspase 3 and 7 double deficient co-cultures.310 As a further step in vivo 

angiogenesis assays were proceeded in caspase 3 knock-out mice and wildtype mice and 

astonishingly vascular growth in the knock out mice did not differ from the negative control and 

therefore displayed poor angiogenic potential.310 Furthermore wound closure was finished by 

day 9 in wild type mice, whereas in caspase 3 knock-out mice required nearly 14 days.310 

 

It may be possible, that apoptosis and we speculate also necroptosis is necessary in chronic 

non healing wounds, to improve angiogenesis.297 In dysfunctional tissue repair a lack of 

vascularization is a main problem.295  

A myriad of cytokines and growth factors have a major effect on the accomplishment of wound 

healing.7 These cytokines are responsible for wound cleansing and chemoattracting and are 

secreted not only by inflammatory cells, but also fibroblasts.7 Fibroblasts also produce growth 

factors, which gained attention in the scientific field to enhance wound healing.7 Many single 

growth factors were used as therapeutic options to ameliorate wound closure.7  

Moreover chronic non healing wounds lack various different proteins, among them: EGF, TGF- 

β, FGF, PDGF, VEGF, IL-1 and -6, and TNF-α.28 This fact in mind leads us to the idea that in 
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such a deranged and deregulated system, the substitution of only one factor may never be 

enough.  

Compromised angiogenesis is a crucial pathomechanism in diabetic non healing ulcers.8,311 

One key player in neovascularization is the family of vascular endothelial growth factors 

(VEGFs).103 Secretomes of mesenchymal stem cells and gingival fibroblasts had higher levels 

of VEGF and applied on wounds led to accelerated wound healing.95,103 So one could argue, 

that it would be enough to substitute VEGF to a nonhealing wound. However, Li et al could 

show, that application of mesenchymal stem cell secretome on a damaged dermal defect, 

could boost the target cells’ own VEGF production, which may account to the regenerative 

potential.312  

Pro-angiogenic signals are not only determined by cytokines, also intracellular pathways are 

essential regulatory factors.313,314 The phosphatidylinositol 3-kinase(PI3K)/AKT/ mammalian 

target of rapamycin (mTOR) pathway can increase VEGF secretion after activation.313 VEGF 

itself can again activate intracellular PI3K pathway in endothelial cells regulating cell 

migration.313  

When analyzing the protein signature of the secretome of irradiated PBMC, we could find the 

only significant amount of VEGF in the supernatant of irradiated PBMC.297 Lower levels of 

secreted VEGF could be seen in the mono-cultures of monocytes, but in all other PBMC 

subsets we could not detect relevant amounts of VEGF in the used proteome profiler.297  

Multiple studies of our working group could measure upregulation of not only pro-angiogenic 

factors such as VEGF type A, CXCL1 and CXCL8, but also PDGF, FGF, MMP-9 and TIMP in 

the secretome of irradiated PBMCs. 57,62,63,315 These factors are important for collagen and 

extracellular matrix remodeling and wound healing.57,62,63,315 So maybe the secretome could 

improve collagen reconstruction by keratinocytes and fibroblasts activation in wounds.57,62,63,315  

Regarding the protein secretion pattern of the different PBMC subsets, one protein was 

especially interesting, as it was present in the supernatant of all subsets: IL-8.297 We noticed 

the highest amounts produced by PBMC and monocytes, and the least in B-cells.297 This may 

also contribute to the pro-angiogenic effects we monitored.297 

As previously mentioned concerning angiogenesis in aortic ring assays, as well as VEGF 

production, our work made it more and more clear, that monocytes are a very important cell 

subset.297 But when compared to the PBMC secretome the angiogenic potential, as well as the 

secretion of pro-angiogenic potential succeeded the combination of all mono-cultures.297 

Which may indicate a cross-talk between the different types of immune cells and delicate 

regulation, concerning the wound environment.297  
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It can also be speculated that the activation of the immune system has a major influence on 

the orchestration of wound healing as already described by Polly Matzinger.316 The immune 

system is not only in charge of self-defense against foreign bacteria or viruses.316 As previously 

discussed every wound needs an inflammatory phase, with pro-inflammatory and pro-

angiogenic cytokines, yet the sole addition of growth factors and other cytokines secreted by 

immune cells, did not show any beneficiary effect.8,12,19,28,29 This gives us a hint, that cytokine 

production in PBMC is a much more complex process and can be affected especially by the 

presence and secretion pattern of other cell-subsets of PBMC.8,12,19,28,29 These cell-cell 

interaction may lead to the necessary reprogramming of cells and therefore different secretion 

pattern necessary for a functioning wound healing. It may be argued, that these so far not 

further elucidated interactions may also be responsible for the effect we have seen in our ex-

vivo angiogenesis assays.297 The observed sprouting of new vessels was mostly increased 

upon stimulation with the secretome of a co-culture of all PBMC-subsets, compared to mono-

cultures of its cell subtypes.297 

As PBMCs are a composition of different cell subsets, it is necessary to have a closer look on 

the various subpopulations of the immune system and their effect on wound healing.  

Laggner et al was able to demonstrate that treatment of dendritic cells with PBMC secretome 

can suppress a hyperergic immune reaction of dendritic cells in a contact hypersensitivity 

animal model.97 This effect is caused by induction of immuno suppressive pathways and 

downregulation of antigen-presenting function of CD1a and CD11c+ cells.97 Intriguingly the lipid 

fraction of PBMC secretome was especially effective in restraining the MoDC effect. 97  

Copic et al. could show, that monocytes treated with PBMC secretome had higher upregulation 

of Interleukin-1 beta, vascular endothelial growth factor A and C–X–C motif chemokine ligand 

1,3 and 5 (CXCL-1, -3, -5) as well as SERPINB2 (which inhibits endopeptidase activity) in a 

single cell analysis.104 This upregulated expression was confirmed on protein level.104 As a 

next step the regenerative potential on endothelial cells was tested in vitro with the plasma 

gathered from PBMC treated whole blood.104 The pretreated plasma lead to higher neo-

angiogenesis in a tube formation assay. 104 Therefore the upregulation of pro-angiogenic 

genes, really is of biological importance and has an appropriate stimulatory effect on 

endothelial cells. 104   

Mast cells are known for their essential role in allergic diseases, however more and more 

knowledge is gathered concerning their role in angiogenesis, vasodilation, skin barrier 

homeostasis, influence on the adaptive and innate immune system, fibrosis, diabetes and 

wound healing.317-319 Mast cells can be found in nearly every tissue and in proximity to 

fibroblasts, epithelial cells, vessels of the vascular or lymphatic system and nerves.320 
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Activation of mast cells is induced by Immunoglobulin E (IgE), which leads to degranulation 

and emission of histamine, tryptase, chymase, also neuroactive serotonin.320 Furthermore 

mast cells are also a source of cytokine and chemokine secretion e.g. TNF, VEGF, IL-6, IL-8, 

TGF-β,PDGF, CCL1-5 and CCL7-9, CCL11, -17 and -22 as well as IL-4.319  Especially IL-4 is 

interesting, as IL-4 and IL-13 usually produced by TH2 T-cells in turn are detrimental for the 

B-cell class switch and IgE production.319,320 Moreover the secretion of pro-angiogenic factors, 

especially VEGF is of interest for wound healing and regenerative medicine.  

Bot et al hypothesized, that in an ischemic environment increases activation of mast cells and 

consequently neovascularization.321 So they induced hind limb ischemia in mice and measured 

a higher amount of activated mast cells in inguinal lymph nodes.321 The collateral diameter and 

number of CD31+ cells in capillaries was higher in mice with activated mast cells, compared to 

the controls.321 As hypoxic conditions are also found in dermal wounds, that may be an 

interesting field for future studies.74 

In obese patients with a low-grade chronic inflammation higher tryptase levels (commonly 

found in mast cell granules) were found in the serum, giving a hint to increased degranulation 

and activation in this patient cohort.322  

Egozi et al observed wound healing in a mast cell deficient mouse strain WBB6F1/J-

KitW/KitW–v and recognized less neutrophil infiltration in the wounded area in the pro-

inflammatory phase.323 While T-cell and macrophage migration remained similar compared to 

wildtype mice.323 The cytokine levels of TNF-α and macrophage inflammatory protein-2, a 

common chemoattractant for neutrophils, resembled those of WT mice.323 A change in the 

wound healing in the proliferative phase could not be detected in this study, emphasizing the 

importance of mast cells in the very first inflammatory phase.323  

Weller et al used the same mast cell deficient mouse strain, but added mast cells in the first 

six days after wounding and could reveal, that wound closure and the neutrophil recruitment 

were normalized.324 He could also demonstrate that H1-receptor antagonists or the absence 

of TNF-α abates wound closure, an effect not seen under the influence of a H2-receptor 

antagonist.324   

The chymase released by activated mast cells also regulates proliferation of human skin 

fibroblasts. 325 After addition of chymase, proliferation of fibroblasts was increased (measured 

with MTT test) and higher expression levels of TGF-β1 were measured after six hours of 

stimulation.325  

Of all PBMC subsets addressed in this thesis, the monocytes seemed to have the most 

important role on angiogenesis, as the sprouting area of newly formed vessels from aortic ring 
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assays was the widest.297 Furthermore monocytes were capable of activating NF-κB in a 

promotor assays.297 Interestingly in the literature not the monocytes, but the macrophages are 

mostly studied, regarding wound healing.  

Macrophages derive from monocytes and develop into classical (CD14++16-, M1 

macrophages), intermediate- or non-calssical (CD14++16++, M2) macrophages according to 

their exposure to cytokines and microenvironment.22 The M1 subtypes are considered pro-

inflammatory as 326 they differentiate under lipopolysaccharide (LPS) and TNF-a stimulation 

and secrete pro-inflammatory cytokines such as IL-12 and IL-23 and produce reactive oxygen 

species (ROS).22,326 On the other hand the non-classical M2 macrophages show anti-

inflammatory and pro-healing effects on their environment by secretion growth factors such as 

IGF (insulin-like growth factor) and TGF-β.22 M2 macrophages develop upon stimulation with 

anti-inflammatory of IL-4 and IL-10 cytokines.22 Whereas in normal wound healing the M1 cells 

are predominant within the first three days and are replaced with M2 until day seven, in diabetic 

wounds this transition from M1 to M2 never takes place.326  In diabetic mice the prevailing M1 

dominance in the wound area leads to inadequate collagen formation, impaired wound closure 

and compromised angiogenesis.22,327 Thus the idea to promote the M2 macrophage 

polarization in chronic wounds seems to be a promising target. 22 A hyperglycemic environment 

as seen in diabetic mice and humans assists macrophage M1 polarization, by increased 

expression of pro-inflammatory cytokines.328 An interesting study could observe, that these M1 

macrophages lead to more TNF-α expression, which impaired keratinocyte migration to the 

wounded area.328 Furthermore matrix-metalloproteinase 1 (MMP-1) expression levels were 

decreased, another factor, that dampens keratinocyte migration.328  

The hyperglycemic environment not only leads to higher differentiation of monocytes to M1 

macrophages, but also initiates their activation by IL-6, TNF-α and IL-1β, one of 13 pro-

inflammatory cytokines found especially in settings with high glucose levels.329 In turn activated 

M1 macrophages themselves lead to further secretion of these three cytokines, enhancing a 

vicious cycle.329   

IL-17 appears to have a major influence in the M1 macrophage polarization, as a IL-17 knock-

out in a murine model lead to shifting into M2 subpopoulation.330 Moreover diabetic mice 

treated with anti-IL-23- or anti-IL-17 antibodies were found to have faster wound closure.330 

This accelerated wound healing 14 days after wound implication, correlated with the higher 

amount of M2 macrophages.330 So maybe IL-17 blockade may be useful in diabetic foot ulcers, 

especially as already approved drugs are used in psoriasis arthritis. Yet further studies must 

be proceeded in humans, especially as the systemic immunosuppressive effect of IL-17 

inhibitors to bacteria and fungi exposed or even infected diabetic wounds may be 

counterproductive.  
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Wound infections and thus LPS exposure drive the M1 shift in diabetic wounds.331 A study 

stimulated mesenchymal stem cells with LPS and added the exosomes of the supernatant to 

a diabetic wound in mice.332 Surprisingly this resulted in increased M2 polarization and 

accelerated wound healing.332 A finding that may suggest, that pro-inflammatory stimulation of 

cells, leads to a change in their secretion pattern, towards anti-inflammatory regulation. The 

above-mentioned study revealed, that the miRNA let-7b in exosomes may play a crucial role 

in the M1-M2 shift via the TLR-4/ NF-κB/ STAT3/ AKT pathways.332  

These data depict the importance of the immune system for physiological wound healing and 

strengthen that our findings are a promising area for future research projects.310 Yet we have 

to consider the destructive power of a mis leaded immune system on wound healing 

either.310,332 

Wu coined the idea that apoptosis of immune cells mark the turning point in wound healing 

from the inflammatory phase into the proliferative phase.308 Without the factors secreted by 

these dying cells the damaged wound area would remain trapped in an ongoing inflammatory 

phase.308 We may add the importance of necroptosis to that idea. 

 

Last but not least, we were able to test the irradiated PBMC secretome (APOSEC) for safety 

on human skin.333 As it is crucial and necessary for all drugs to undergo strict controls to prove, 

that they do not inflict any harm on humans, phase I studies are of utmost importance.333  

First step is to prove a drugs’ safe use are done with toxicological assays.334 Wuschko and 

Gugerell et al. described this preclinical testing.334 Acute neuropharmacological adverse 

events and toxicity was tested intravenously in a murine model, with negative results.334 In the 

repeated intravenous toxicity tests over four weeks, no harm or death could be assessed in 

the tested rodents.334 As the drug is planned to be used topically on wounds, also the 

subcutaneous application was necessary to test, to verify safe use with direct contact to the 

subcutaneous fat.334 To verify non-toxicity in a non-rodent species, mini pigs were selected for 

s.c. application.334 To observe topical effects, the local lymph node assay was chosen.334 All 

animals were examined once a day for clinical signs of illness or changes in behaviour.334 

Laboratory parameters, urine analysis and ophthalmological or auditory abnormalities were 

checked and at the end of the intervention period histopathological examination was 

performed. 334 No animal died after i.v. or s.c injections, proving non-toxicity of the tested doses 

(max 500 U/kg).334 In the local lymph node test, no signs of intolerance were detected.334 These 

results are building the foundation for all subsequent safety tests.334  
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Furthermore, stability assays need to prove the safe storage and maintenance of efficacy of 

future drug compounds.335 Lyophilization does the trick, to stabilize this biological agent and 

makes it possible to store them in temperatures other, than -80°C, which would restrict the 

broad use in a clinical setting.334,335 To test this steady quality, potency assays for batch 

controls need to be designed.61 The potency assays developed for APOSEC are described in 

the first paper of this thesis and are aiming NFκB, HSP-27 and AP-1.297 Before verification of 

the safe and stable quality, no clinical testing would be possible, especially in “biological” 

therapies.335 With the use of different immune cells, which can show interindividual differences, 

comparable quality and function is a major concern.334 To minimize this effect, several 

secretomes from different donors are pooled.61,333 The pooled product was tested with the 

potency assays and depicted comparable results between batches.61 This was another 

milestone before the use in humans was reasonable. 

To conduct a Phase I or II clinical study a lot of safety concerns need to be addressed in 

advance.333 Viral transfection of blood products is a concern, that needs to be addressed.336 

Gugerell et al. tested upfront different methods to diminish viral viability and titers with 

lyophilization, treatment of methylene blue (activated with visible light) or the irradiation with 

25kGy of ionizing irradiation of lyophilized APOSEC.336 For this the effects on the human 

immunodeficiency virus (HIV-1), Hepatitis A virus (HAV), pseudorabies virus (PRV) or porcine 

parvovirus (PPV) were observed.336 Methylene blue treatment served as standard of care for 

viral inactivation, according to the world health organization (WHO).337 The supernatant of 

PBMC was spiked with the mentioned viruses and treated with methylene blue (MB) and light, 

lyophilization or γ-irradiation with 25kGy after lyophilization.336 After addition of MB the 

enveloped viruses (HIV, PRV) and the bovine viral diarrhoea (BVD)-virus showed infectivity in 

APOSEC as a result of successful viral inactivation.337 But the non-enveloped species such as 

HAV and PPV displayed infectivity after MB treatment.337 Lyophilization resulted in significantly 

reduced virus titers of BVDV and considerably less decrease in HAV and PRV.337 In all other 

viruses no difference in number or activity could be detected after lyophilization.337 In a 

combined approach of lyophilization and consecutive gamma irradiation, both the enveloped 

viruses (PRV, HIV and BVDV), as well as the non-enveloped ones (HAV) were inactivated.337 

Only the PPV could not be inactivated by the combined procedure.337  

To further optimize the already very safe approach for viral infections, the testing of healthy 

donors for viral infections should be implemented prior to blood donations.333 To accomplish 

this goal the working group around Prof. Ankersmit started a cooperation with the Austrian Red 

Cross Blood Transfusion Service for Upper Austria, Linz.333 The PBMC were isolated from 

tested and healthy blood donors fulfilling GMP criteria.333  
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The secretome of PBMC can be manufactured in two manners. Either autologous, which 

means, that the probands’ or patients’ own blood is obtained for PBMC isolation, or allogeneic 

using PBMCs of blood donations.333 The use of the patients own blood seems may decrease 

the risk of having allergic reactions, yet we do know little about dysfunctional secretion 

patterns, that may lead to decreased wound healing.333  

An allogeneic approach may hold the probability to elicit immunological reactions.99 Thus, we 

processed the PBMCs the same way as blood donations for immune compromised patients 

are treated, with ionizing irradiation.99 Due to the irradiation possible graft versus host diseases 

are very unlikely and the proliferation of T-cells inhibited.99 On the other hand, to this date it is 

not fully elucidated, if the malfunctioning of autologous immune cells is one reason for 

inadequate wound healing, therefore allogeneic PBMC secretome, may be necessary for 

improving the body’s regenerative capacity.99,297  

Furthermore, possible alternatives have been considered for γ-irradiation.99 Laggner et al 

tested the effect on the secretome after electron-irradiation of PBMC, which showed similar 

protein expression patterns, as well as comparable angiogenic capacity on tube formation 

assays.99 As γ-irradiation is available throughout the country as a standard procedure in blood 

donations, the phase I study was designed to prove its safety.99 But it is a matter of special 

importance to have the possibility to use other non-radioactive, biologically equivalent 

manufacturing methods.99 

We tested the safety of autologous APOSEC on intact human skin in healthy probands in a 

double-blinded, randomized clinical phase I study.333 The primary aim of the study was the 

tolerability and safety on human skin and furthermore on a wounded area.333  

According to the standard of care two doses of APOSEC were tested to identify dose 

dependent adverse events or effects on the wound area.333 The healthy probands were 

randomized to the two dose groups or placebo and were observed in a double-blinded 

manner.333  

The probands had regular clinical check-ups, before and after treatment consisting of physical 

examination, laboratory parameters were checked with an emphasis on blood count, kidney 

and liver parameters, as well as inflammatory parameters (C reactive protein).333 Due to the 

autologous approach, participants donated 450ml blood at the Red Cross Blood Transfusion 

Service Center in Linz, where the processing was completed according to GMP guidelines.333 

The autologous, irradiated PBMC secretome or Placebo were applied on intact skin first, to 

monitor allergic reactions or irritation of the skin.333 If no signs of allergic reactions could be 

observed, we proceeded to test APOSEC on an artificial wound.333 After a punch biopsy was 

done to generate a wound with the same dimension for every group, the treatment was 
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applied.333 No severe adverse events were seen, only mild reactions could be detected.333 No 

clinically significant changes in the laboratory results were found in the healthy probands and 

also in the follow-up visits no delayed reactions could be documented.333 Participants were 

asked for symptoms at every study visit.333 The applicability was tested either and showed 

satisfactory results.333 

This study was of great importance for the development of future study medications, as the 

safe use is the corner stone for clinical use in patients.333 Furthermore if the autologous PBMC 

secretome would have not been tolerated, no proceeding to the allogeneic product would have 

been possible.333  

 

Outlook 

All these preliminary data pave the way for the clinical phase II study of allogeneic APOSEC 

in the treatment for chronic wound healing deficiency.333 We hope that irradiated PBMC 

secretome will lead to enhanced wound healing and help people to regain a higher quality of 

life and reduce severe consequences of wound healing, such as loss of function or even 

amputation.25,333,338,339  

Moreover, PBMC are a waste product of blood donations usually discarded and therefore 

easily to obtain, in contrast to stem cells.333 As PBMCs are obtained from healthy blood donors, 

the risk of deregulated or deranged immune reaction is minimized.333 The irradiation of PBMC 

is normally conducted to diminish immunological reactions in blood donations for immune 

deficient patients (e.g., after transplantation), thus the irradiation of PBMC is an already tested 

and safe procedure for cell products.99,333,336 Another safety step is the controlled production, 

according to good manufacturing principles (GMP) standards.333  

If the regenerative capacity of wound healing observed in the above-mentioned studies can be 

shown in human chronic wounds, the origin of a possible new treatment option for patients 

with unmet need would be created.57,89,289,297 Planned is the topical application on chronic, 

diabetic foot ulcers with standardized digital measurement software and the comparison of the 

effect in a placebo and treatment group.340 The test period will be several weeks to have the 

opportunity to depict epithelialization.340 Positive results may open the doors to the realm of 

new treatment options for patients with chronic disease.340 

The clinical phase II study (ClinicalTrials.gov Identifier: NCT04277598) "A Study to Evaluate 

Safety and Efficacy of APO-2 at Three Different Doses in Patients with Diabetic Foot Ulcer"340 

is the first trial to test allogeneic PBMC secretome of healthy donors on wound healing.340 The 
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allogeneic approach is more practical, than the isolation and processing of patient's own blood 

samples.340 Thus, it could be used as an off the shelf product in clinical practice.340 The longer 

a skin barrier is open, the more infections may occur and therefore quick closure is also a 

matter of systemic health.7,26,27,31,341 Wound infections and sepsis are often a reason for 

hospitalization and additional costs for the health system and in some cases a life-threatening 

condition for the patient.7,26,27,31,341 Another important factor is the development of antibiotic 

resistance, which is increasing in the western world.342-344 All these aspects lead to the 

conclusion, that the most important reason for wound closure is the fast restoration of our 

largest protector against infections: the skin.7,26,27,31,341 
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11 CHAPTER FOUR: Methods 

11.1 Ethical and legal aspects 

These two studied were conducted according to the current principles of the Ethics Committee 

of the Medical University of Vienna as well as the Declaration of Helsinki and Good Clinical 

Practice. The experiments and trials were approved by the Ethics Committee of the Medical 

University of Vienna (EK Nr. 1285/2013 and EK-Nr 1539/2017) and the animal research Animal 

Research Committee (Medical University of Vienna) (Protocol No. 190097/2015/9). 

Furthermore the clinical study was notified at the EU clinical trial register (EudraCT-Number: 

2013-000756-17; NCT02284360; AGES INS-480102-0013-007).  

 

11.2 PBMC preparation and secretome production 

The isolation of PBMC was conducted from heparinized whole-blood samples or from 

leukocyte chambers after blood donation from healthy donors at the Department of Transfusion 

Medicine or the Red Cross Blood Transfusion Service of Upper Austria. The samples were 

diluted with Hanks` balanced salt solution and max. 35ml layered over 15ml of Ficoll-Paque 

PLUS (GE Healthcare Bio-Sciences AB, Sweden). By density gradient centrifugation (800g, 

15min without brake)  the PBMC were separated at the Buffy Coat between the plasma and 

the Ficoll, segregated from erythrocytes and granulocytes at the bottom of the vessel. PBMC 

were washed with phosphate-buffered saline (PBS-/-, Gibco by Life Technologies, Carlsbad, 

CA, USA) and γ-irradiated with 60 Gy for apoptosis and necroptosis induction and cultured at 

a concentration of 25 Mio cells per ml in Cell Gro medium (Cellgenix, Freiburg, Germany) at 

37°C for 24h. For dose dependent effects samples were irradiated with 0.9, 1.9, 3.75, 7.5, 15, 

30, and 60 Gy. The inhibtors of apoptosis and necroptosis zVAD (20 µM) and Necrostatin-1 

(100 µM) both from Sellekchem, Munich, Germany) or neutralizing antibodies against TNF 

receptor superfamily 1A and 1B (both (R&D Systems, Minneapolis, MN, USA) at a 

concentration of 1 µg/ml, were added immediately after irradiation and left in the wells for the 

whole culture period. After the culture period the samples were centrifuged  (400 × g, 9 min) 

the pellet was used for protein analysis e.g. westerblotting and Lämmli buffer (Bio-Rad, 

Hercules, CA, USA) phosphatase and proteinase inhibitors (Thermo Fisher, Waltham, MA, 

USA) were added or lyzed in Trizol (Invitrogen, Carlsbad, CA) for RNA isolation and frozen at 

-80°C. The supernatant was used for stimulation and protein analysis and preserved at -20°C.  

For further separation of the different cell subsets of the PBMC positive isolation with magnetic 

microbeads (Miltenyi, Bergisch Gladbach, Germany) was used. For purification to a purity of 
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93 to 99% microbeads against the epiptopes of CD14 (monocytes), CD19 (B cells), CD4 (CD4 

T cells), CD8 (CD8 T cells) and CD56 (natural killer cells) were used. The incubation and 

separation was conducted according to the manufacturer' s instruction. After isolation the cells 

were treated as mentioned above, irradiated and all cultured in the same Cell Gro medium for 

24h.  

For production of PBMC secretome according to current GMP principles the laboratory of the 

Austrian Red Cross Blood Transfusion Service for Upper Austria, Linz was gained as a partner 

for the clinical phase 1 study.  

11.3 Westernblot 

The samples obtained from the PBMC separation were further analyzed by protein blottings. 

For this purpose 30µg of protein of the cell lysate in Lämmli buffer (Bio-Rad, Hercules, CA, 

USA) with the above-mentioned proteinase and phosphatase inhibitors were pipetted on 

ExcelGels (GE Healthcare). After protein separation according to their specific kDa transfer 

onto nitrocellulose membranes (Bio-Rad) was done according to manufacturer' s protocol and 

blocked. After incubation with one of the following antibodies for necroptosis detection 

phospho-RIPK 1 at a concentration of 1:100 (Cell Signalling Technology, Cambridge, UK), 

phospho-RIPK3 at a concentration of 1:200 (Abcam, Cambridge, UK) and phospho-MLKL at 

a concentration of 1:500 (Cell Signalling Technology, Cambridge, UK) according to the 

manufacturer' s protocol overnight under motion at an environment with 4°C. For apoptosis a 

cleaved-caspase 3 antibody was used at a concentration of 0.5 µg/ml (R&D Systems, 

Minneapolis, MN, USA). Furthermore glyceraldehyde 3-phosphate dehydrogenase antibody at 

a concentration of 1:2000 (Cell Signalling Technology, Cambridge, UK) and TNF antibody at 

a concentration of 1 µg/ml (R&D Systems, Minneapolis, MN, USA). For the blockade of the 

TNF-antibody it was incubated for 4 hours ata concentration of 1µg vs 10 µg of recombinant 

TNF ((R&D Systems, Minneapolis, MN, USA). After several washing steps the membrane was 

incubated with a second step antibody at a concentration of 1:10,000 Bio-Rad, Hercules, CA, 

USA) and afterwards with  Supersignal West Dura (Thermo Fisher, Waltham, MA, USA). The 

detection of the bands was achieved with the ChemiDoc System (Bio-Rad, Hercules, CA, 

USA).  

11.4 Scanning electron microscopy 

Irradiated or untreated PBMC after 24h of culture were washed with PBS and fixated with a 

Karnovsky' s fixative (Morphisto, Frankfurt am Main, Germany) consisting of glutaraldehyde 

(2,5%), and paraformaldehyde (2%) in phosphate Buffer iwth a pH of 7,4. Afterwards the cells 

were dried with hexamethyldisilazane (Sigma-Aldrich, Taufkirchen, Germany) and fixed via 

gold sputter (ACE200, Leica Microsystems, Wetzlar, Germany). The evaluation and 
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photography was done with a scanning electron microscop (JSM 6310, Jeol Ltd®, Japan) at 

an acceleration voltage of 15kV.  

11.5 Flow cytometry 

The Annexin-V/PI staining for necroptosis and apoptosis imaging was accomplished with the 

Annexin-V-FLUOS Staining Kit according to the manufacturer' s protocol (Roche, Basel, 

Switzerland) and visualized via the Amnis Image Stream X Mk II (Luminex Corp., Seattle, WA) 

at the Core Facility of the Medical University of Vienna.  

11.6 Protein assays  

The supernatant obtained after cell culture were frozen at -20°C until further processing. The 

protein concentrations of TNF-α and lymphotoxin-A (both R&D Systems, Minneapolis, MN, 

USA) in the supernatant were determined with enzyme-linked immunosorbent assay (ELISA) 

following the distributor's instructions. In short, the capture antibody was coatet on a 96-well 

plate and incubated overnight. After washing and reduction of unspecific bindings with blocking 

buffer the samples were added. Thereafter another washing step was conducted and the 

detection antibody was pipetted into the wells. For identification horse radish peroxidase was 

applied and after further washing steps the colouring reaction was started with 3,3′,5,5′-

Tetramethylbenzidine (TMB) and stopped with 2% sulphuric acid and measured with a 

photometric analyzer at a wavelength of 450nm (PerkinElmer, Boston, Massachusetts, USA).  

For the protein detection of the secretome of the different PBMC subsets, apoptotic and 

necroptotic (with or without inhibitors) after irradiation or untreated the samples were analyzed 

with the Proteome Profiler XL Cytokine Array (R&D Systems, Minneapolis, MN, USA) strictly 

applying to the manufacturer' s instructions. The detection of pro- and anti-apoptotic proteins 

was measured with the Human Apoptosis Array (R&D Systems, Minneapolis, MN, USA) also 

according to the manual, but in advance the cells itself were lyzed in the specific buffers. The 

measurement and analysis was done with the ChemiDoc System (Bio-Rad, Hercules, CA, 

USA).  

11.7  Potency assays 

The reporter gene assays as well as the potency assays were developed and realized by the 

Synlab Pharma Institute AG (Bern, Switzerland), to determine the capability of the cell 

secretome with regard to activation of HSP-27, NF-кB and the activator protein-1 (AP-1). 

Therefore, human neuroblastoma SH-SY5Y cells were transfected with firefly luciferase, that 

is activated by a promoter of AP-1in a mixture of Glutamax-Medium and Ham's F12/MEM 

(Gibco, Thermo Fisher, Waltham, MA, USA) with 15% fetal bovine serum (FBS) and puromycin 

(1 µg/ml) and L-glutamine (2 mM) (Sigma-Aldrich, St. Louis, MO, USA). 20.000 cells were 
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exposed to the pooled secretome of four donors of monocytes, PBMCs or medium control and 

the fluorescence signal after the addition of SteadyGlo (Promega, Fitchburg, WI, USA) was 

analyzed. For the detection of the luminisience the signal was quantified with the EnVision 

reader (Perkin-Elmer or Centro LB960, Berthold). A different procedure was used for the 

activation of HSP-27 and NF-кB pathways. For that reason, the cells were incubated with the 

secretome for 30 minutes and permeabilized. The permeabilized cells were exposed to 

antibodies detecting phosphorylated HSP-27 and NF-кB and for luminescence reaction 

peroxidase-conjugated antibodies similar to an ELISA. This luminescence reaction was 

envisioned with the same reader mentioned above. The quantification was done with the PLA 

software (Stegmann Systems GmbH, Rodgau, Germany).  

11.8 Aortic ring assays 

For testing of the pro-angiogenic effect of the PBMC supernatant ex-vivo aortic ring assays 

were conducted. The aorta of male C57BL/6 mice was obtained after cervical dislocation and 

sliced into 1mm thick rings. The protocol was slightly adapted from a previously published 283 

experiment.  The rings were embedded between two layers of fibrin, composed of 43.3 µg/ml 

aprotinin, 0.6 U/ml thrombin (both from Sigma-Aldrich, St. Louis, MO, USA) and fibrinogen at 

a concentration of 2 mg/ml (Merck Millipore, Burlington, MA, USA). After hardening the layers 

and aortic rings were equilibrated in M199 medium supplemented with 4 mM L-glutamine, 10% 

FBS and antibiotics and anti-mycotic substances (100 μg/ml streptomycin, 100 U penicillin and 

250 ng/ml amphotericin B (all from Gibco, Thermo Fisher, Waltham, MA, USA except the FBS 

(PAA Laboratories, Pasching, Austria)) for 45 minutes and spare medium was removed. M199 

medium was diluted with the supernatant of apoptotic and necroptotic PBMC or their freshly 

addded respective inhibitors (20 µM zVAD and 100 μM necrostatin-1) as controls as well as 

with the secretome of the different irradiated PBMC subsets as previously described and 

cultivated for 3 days. To evaluate the living sproutings after these 3 days of cultivation calcein 

dye (Thermo Fisher, Waltham, MA, USA) was added according to the manufacturer's 

description and photographed with the Olympus IX83 scanning microscope (Olympus, Tokyo, 

Japan). The quantification was conducted using the ImageJ software version 1.48v (Wayne 

Rasband, National Institutes of Health, Bethesda, MD, USA). 

11.9 Tube formation assays  

For the in vitro evaluation of angiogenesis, a tube formation assay was performed with primary 

human umbilical vein endothelial cells (HUVECs). For starvation purposes the cells were 

incubated overnight (for 12h) at basal EBM-2 medium without growth factors (Lonza, Basel, 

Switzerland) and 2% FBS followed by 3h basal EBM-2 without FBS. The tissue culture plates 

provided by the tube formation kit from ibidi were layered with a matrigel matrix with decreased 
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growth factors (Ibidi USA Inc., Fitchburg, WI, USA) following the manuals instructions. 1 × 104 

cells of the HUVECs were placed in each well and stimulated with the secretome of apoptotic 

and necroptotic PBMCs at a final concentration of 4 × 106 cells/ml (same dilution as in the aortic 

ring assays), medium and freshly added inhibitors served as control. After 3 hours of 

stimulation period the results were photographed with the Olympus IX83 scanning microscope 

(Olympus, Tokyo, Japan) and length and inteconnections of the tubes was calculated with the 

Angiogenesis Analyzer ImageJ plugin (Wayne Rasband, National Institutes of Health, 

Bethesda, MD, USA).  

11.10 Immunohistochemistry 

After saoking in formaldehyde for 6 to 24h, according to the organ tissue, the samples were 

embedded in paraffin by the Department of Dermatology. The staining process was conducted 

apllying to the Avidin Biotin Peroxidase complex protocol.345 The antibodies used for detection 

are the following: podoplanin 1:50 (clone: D2-40; 322M-15; Cell Marque Corporation, Rocklin, 

CA, USA), keratin 10 1:1000 (PRB-159P, Covance Research Products Inc., Denver, PA, USA) 

and factor VIII 1:1000 (A0082, DAKO, Santa Clara, CA, USA). The tissue samples were cut 

into 4–6 μm thick sections and pretreated to remove the paraffin. The specimens were treated 

with citrate buffer (pH 0,6) and hydrogen peroxide (0,3%) and afterwards incubated with the 

pimary antibodies overnight at 4°C. Washing steps were applied and the secondary antibody 

added on the sections and incubated for 30 minutes, depending on the primary antibody either 

rabbit or mouse (RPN1001V, Chalfont St. Giles, GB; BA-1000, Vector Laboratories, 

Burlingame, CA, USA). To avoid unspecific binding the antibodies were diluted in sheep or 

goat serum (10%, sc-2488, Santa Cruz Biotechnology Inc., Dallas, TX, USA; X0907, DAKO, 

Santa Clara, CA, USA). After another washing step the previously mentioned ABC reagent 

(PK 4000, Vector Laboratories, Burlingame, CA, USA) was kept on the samples for another 

30 minutes. The colour reaction was implemented with AEC substrate (K3469, DAKO, Santa 

Clara, CA, USA) and the tissue specimen stained with haematoxylin-eosin (1.09253.500, 

Merck, Darmstadt, Germany).  

Frozen sections were kept in OCT at -80°C and stained with CD45 1:100 (ab10558, Abcam, 

Cambridge, UK). The stained slices were photographed by an automated microscope 

TissueFAXs (TissueGnostics, Vienna, Austria) situated at the Core Facility (medical University 

of Vienna). 

11.11 RNA purification 

The cell pellets of the irradiation or untreated PBMC and the PBMC subsets after 24h of 

cultivation were lyzed in 500µl Trizol (Invitrogen, Carlsbad, CA) and preserved at -80°C. For 

purification of the RNA 200µl chloroform was added to an adequate amount of lyzed sample 
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and kept on ice for 5 minutes followed by centrifugation to separate the organic phase. The 

aqueous phase containing the RNA was mixed with the same amount of propanol and 

centrifuged followed by washing steps with 75% and 100% ethanol. The RNA containing pellet 

was dried and resuspended in RNA-free H2O and the quality measured by the Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), whereas the quantity was analyzed 

via NanoDrop-1000 spectrophotometer (Peglab, Erlangen, Germany). 

11.12 Microarray  

The samples were analyzed with the Affymetrix Human Transcriptome Array 2.0 (Affymetrix, 

Thermo Fisher Scientific Inc. Waltham, MA, USA) after RNA purification at the Genomics Core 

Facility of the Medical University of Vienna applying to the MIAME346 principles. The data from 

the microarray testing were analyzed using the Gene GeneSpring Version 15.0 software 

(Agilent) after log2 transformation and quintile normalization. According to previously published 

techniques the data was filtered  to minimize the multiple hypotheses and to work mostly with 

genes, with an expression level above the 60% percentile.62 To find statistically significant 

differences in mRNA expression a moderated paired t-test was calculated with a Benjamini-

Hochberg post-hoc test (FDR <5%) for genes with a fold-change ≤ −2 and ≥2. Clustering of 

mRNA expression was analyzed with Euclidean distance metric as well as average-linkage 

clustering. According to current guidelines the results were published with the GEO Accession 

number GSE127982 at the ncbi website (the password can be found in the publication) 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127982. 

11.13 Pathway analysis 

For evaluation of the differences in the expression of biologically relevant genes three methods 

were used: 1) for pathway analysis the Kyoto Encyclopedia of Genes and Genomes (KEGG), 

2) for biological enrichment of processes Gene ontology-enrichment was calculated and 3) 

categorization of the different genes according to biological function via WEB-based Gene Set 

Analysis Toolkit (WebGestalt)347.348,349 Post-hoc corrections were applied as described above 

in the section microarray. Additionally activated canonical pathways were searched with the 

help of Ingenuity Pathway Analysis (Qiagen, Hilden, Germany) for mRNA depicting a fold 

change of >3 comparing freshly lyzed cells vs irradiated PBMC.  

11.14 Statistical methods 

Data obtained during these studies were analyzed via GraphPad Prism 5 (GraphPad Software 

Inc., California, USA), R version 3.2.1 or SPSS (SPSS Inc., Chicago, USA).  The values were 

stated as mean ± standard deviation (SD), minima and maxima if not stated otherwise. 

Depending on the data distribution (Gaussian distribution) one-way analysis of variance or 
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Kruskal-wallis test was used with its respective post-hoc analysis (Bonferroni or Dunn’s), as 

well as two-tailed student's t test. The Gibbs outlier test was utilized to truncate discordant 

values. P-values below 0.05 were considered statistically significant. 
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