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“Nothing in life is to be feared, it is only to be understood. Now
IS the time to understand more, so that we may fear less.”

Marie Curie
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4 Abstract

Chronic non-healing ulcers depict a growing concern considering the soaring incidences
especially in diabetes. These diabetic wounds are leading to infections and in some cases to
amputation and elicit huge costs for the health care system. New treatment methods are

needed to promote faster wound closure and avoid complications.

Our working group was able to show in previous studies by Mildner et al. and Hacker et al. that
the topical application of supernatant of peripheral blood mononuclear cells (PBMCs) cultured
for 24 hours on wound areas lead to accelerated wound healing. We assumed, that this tissue-
regenerative effect originates from a plethora of cytokines released by the PBMCs. Thus, we
tried to elucidate the role of the secretome of different PBMC subtypes on angiogenesis, which
is crucial for successful wound healing. Furthermore, we wanted to investigate the role of

apoptosis and necroptosis on the secretion pattern.

In this thesis we could show, that the pro-angiogenic capacity (tested in aortic ring assays)
was highest for the secretome of PBMCs cultured together, compared to the secretome of
mono-cultures of PBMC subsets (monocytes, T-cells, B-cells and natural killer cells). This

implicates possible cell-cell-interactions leading to changes in the supernatant composition.

Moreover, we could reveal that ionizing irradiation of PBMCs prior to cultivation induced not
only apoptosis, but also necroptosis. Interestingly tumor necrosis factor-receptor superfamily
member 1B acted as main inductor of necroptosis after irradiation. We could further
demonstrate that necroptosis boosts the capacity of PBMC secretome to improve tissue

regeneration by enhanced angiogenesis.

As a next step towards clinical use, we could demonstrate in a clinical phase | study, that the
application of the autologous supernatant of PBMC exposed to ionizing irradiation (produced
according to Good Manufacturing Practice (GMP) on dermal wounds is safe and well tolerated.
These results may pave the way for future treatment options of chronic wounds and thus

alleviate disease burden.
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5 Zusammenfassung

Chronische, nicht heilende Wunden stellen ein zunehmendes Problem in der klinischen Praxis
dar, insbesondere mit der steigenden Inzidenz von Patienten mit Diabetes. Diabetische
Wunden fihren oft zu Infektionen und im schwersten Fall bis hin zu Amputationen, was zu
hohen Kosten fur das Gesundheitssystem fuhrt. Behandlungsmadglichkeiten zur schnelleren
Wundheilung fehlen nach wie vor, um diese Belastungen und Komplikationen effektiv zu

verringern.

Unsere Arbeitsgruppe konnte zeigen, dass die Applikation des Uberstandes von
mononukledren Zellen des peripheren Blutes zu einer deutlich schnelleren Wundheilung in
murinen und porzinen Modellen flhrte. Als Ursache flr den verbesserten Wundverschluss
vermuteten wir den parakrinen Effekt der Vielzahl an ausgeschutteten Zytokinen und
Wachstumsfaktoren im Zelliberstand. Der genaue Wirkmechanismus, der verbesserten
Angiogenese ist noch zu entschlisseln und Gegenstand dieser Dissertation. Das Sekretom
der T-Zellen, B-Zellen, Naturlichen Killer-Zellen und Monozyten, aus denen sich die PBMC
zusammensetzen wurden daher in in-vitro Aorten-Ring Experimenten auf ihr angiogenetisches

Potential untersucht.

Uberraschenderweise zeigte sich, dass die Kultivierung aller PBMC gemeinsam den
deutlichsten, positiven Effekt auf die Angiogenese hatten, wahrend die Monokulturen von
Naturlichen Killerzellen, T- und B-Zellen und Monozyten einen deutlich kleineren Effekt im
Hinblick auf die Angiogenese zeigten. Dies lasst auf einen mogliche Zell-Zell-Interaktionen, die

die Zytokin-Produktion und vor allem Zusammensetzung beeinflussen, schliel3en.

Zudem konnten wir in bisherigen Studien zeigen, dass die Bestrahlung der PBMC mit
ionisierender Strahlung sowohl Apoptose, als auch Nekroptose auslésen kann. In dieser
Dissertation fanden wir heraus, dass die Art des Zellniedergangs via Apoptose und Nekroptose
die Gefallaussprossung durch die veranderte Proteinsignatur der ausgeschitteten Zytokine

mafgeblich beeinflusst.

Identifiziert wurde neben der Apoptose, vor allem die Nekroptose als wichtiger Faktor der
vermehrten Gefallaussprossung. Durch Rezeptor-Inhibierung des Tumornekrosefaktor-
Rezeptor 1B (TNFR1B) konnten wir die Nekroptose-Induktion erfolgreich verhindern. Somit
konnten wir auch den verantwortlichen Signalweg der Nekroptose-Entstehung nach

bestrahlung identifizieren.

Damit diese Erkenntnisse in Zukunft als mégliches, neues Therapiekonzept Patienten zur
Verfugung gestellt werden kann, muss das Sekretom der bestrahlten PBMC (APOSEC)
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zunachst auf ihre Sicherheit in der menschlichen Anwendung getestet werden. Hierfur fuhrten
wir eine Klinische Phase | Studie durch, welche die sichere Anwendung des modifizierten,
GMP-konform hergestellten, autologen APOSEC demonstrierte. Wir hoffen, dass diese Arbeit

den Weg flr geplante Phase Il und Il Studien ebnet und in Zukunft eine verbesserte

Patientenversorgung ermdglicht.
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8 CHAPTER ONE: Introduction

8.1 Structure of the human skin

The skin is the body’s largest organ with a surface area of nearly 1,8m? (depending on
individual size of the human body).! The skin can be separated in two main layers, the
epidermis and the dermis, which are located on the hypodermis (a subcutaneous fascial layer,
connecting the dermis to deeper muscular tissue or periosteum).? The structure of the skin

displays its complexity.

The epidermis consists of four to five layers of mostly keratinocytes, subdivided in stratum
corneum, stratum granulosum, stratum spinosum and stratum basale (stratum lucidum is only
present in thicker parts of the skin).?2 The thickness of the epidermis depends on the distinct
part of the body and ranges from 1,4mm to 0,8mm (e.g. plantar parts are thicker than palmar
skin).2 Furthermore hair follicles and the corresponding muscles (arrector pili muscles), as well
as sebaceous- and sweat glands can be found in the epidermis.? Apart from the majority of
keratinocytes different cells such as melanocytes, dendritic cells (Langerhans cells) and
Merkel cells (especially important for the tactile sensation) are essential parts of the skin.?
Melanocytes generate melanin and aggregate them in melanosomes, which are presented on
dendritic processes and consumed by keratinocytes via phagocytosis and therefore reach the
upper layers of skin within the keratinocytes.? The phagosomes release the melanin into the
cytoplasm, where melanin granules protect the cell from DNA damage via ultraviolet-
irradiation.? Merkel cells are mechanoreceptors and are specialized on light tactile sensation
and are located near afferent, unmyelinated sensory plates.? Langerhans cells derive from
monocytes of the bone marrow and fulfill the role of macrophages, such as recognition,
processing and antigen presentation to naive T-cells.®> Due to its role of antigen processing
Langerhans cells are especially important in autoimmunity, if autoantigens are presented to T-

cells and therefore may lead to contact allergic responses.?

The dermis connects epidermis to hypodermis and sustains the epidermis with nutrients and
is characterized by a strong fibroelastic tissue and extracellular matrix.2 The dermis consists
of a papillary and reticular layer.? Recent proteomic analysis showed the composition is a mix

of different types of collagens (I, I, lIl, VI, Xl and XIV), defining its flexibility or cohesiveness.**°
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The papillary part is an assembly of thin collagen fibers (mostly collagen 1), whereas the
reticular part displays a stronger and denser collagen composition (primarily collagen type
[11).45 The avascular epidermis draws its nutrients from looped capillaries in the papillary layer.?
These capillaries embedded in loose elastic fibers also contribute to temperature regulation of
the body.? Moreover also here mechanoreceptors called the Meissner corpuscles can be
found, which transport tactile stimuli to the nerval system.? Beside cells of the connective
tissue this layer is populated with a variety of sweat- and sebaceous glands, pressure-
recognizing mechanoreceptors known as Pacinian corpuscles, hair follicles and its vascular-
and lymphatic-system.? Furthermore for stretching sensation Ruffini corpuscles, sensory
innervation and muscles (eminently for facial expression) are incorporated.? A high amount of
arteriovenous shunts in the capillary system and thus vascular tone control of the dermis allows
a precise thermoregulation of the skin, necessary to adapt to temperature changes, due to

exercise or environmental exposure.?

Below the reticular layer of the dermis lies a subcutaneous tissue consisting of loose
connective properties which transforms into adipose tissue.? This subcutaneous tissue of the
hypodermis is highly vascularized with a widespread capillary system, responsible for the
excellent absorption of drugs or medication applied via injection.? Also the lymphatic system

is highly developed in the hypodermis.2

These layers form a barrier and protect the human body bidirectionally from fluid or protein
loss and on the other hand from intrusion of infections, toxic environmental factors or ultraviolet
irradiation.?

For a long time the role of skin as barrier to environmental jeopardies, such as a multitude of
bacterial and viral infections, was seen as its sole function, yet the skin represents the largest
immunological organ of the body.® Moreover skin fulfills various essential functions as the
regulation of temperature (e.g. by sweating)® and is involved in the nervous system regulation

for danger signaling and fluid regulation.®

8.2 Cutaneous wound healing

Wound healing depicts a myriad of complex processes of different cell types and interactions
between the immunologic- and vascular- system, skin and tissue.” To accomplish an adequate
healing process a variety of cytokines, chemokines, transportation of nutrients to the site of

damage with a sufficient blood supply and matrix proteins are necessary.”"°
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A physiological wound healing starts with hemostasis and activated thrombocytes, which are
found at the wounded area to a high amount.®'" Due to aggregation of these thrombocytes
and haemostasis a stable fibrin clot is formed, stopping the blood loss and closing the
endothelial defect.® These thrombocytes secrete various different vasoactive and proliferative
proteins such as tansforming growth factor g (TGF-B), platelet derived-, fibroblast-, and
epidermal growth factor (PDGF, FGF, EGF), prostaglandins, histamine and bradykinin.%'?
Mast cells and basophils also play an important role in the histamine production, and are
enhanced by complement activation, which in turn is activated by platelets.®'? The secreted
vasoactive proteins lead to initial vasoconstriction in the damaged area, further stopping blood

loss.®12

The inflammatory phase starts as soon, as the blood clotting is completed and serves as
eradication step of antimicrobial pathogens and foreign objects in the wounded area.®™ To
fulfill this purpose vasodilation of blood vessels is activated to increase the vascular
permeability and transportation of inflammatory cells and peripheral blood mononuclear cells
(PBMC) to the damaged area.®™ In this regard, especially neutrophils, monocytes and
macrophages need to be mentioned as main players in this phase.®'®* Neutrophils act as first
defense line after wounding by eradicating bacteria via secretion (degranulation) of toxic
proteases and enzymes and effectively destroying pathogens via phagocytosis and dissolving
them in their phagosome.' Moreover neutrophils produce free oxygen radicals and lysosomal
enzymes to create an acidic, bactericidal environment, to decrease the risk of wound
infections.'2'* Furthermore neutrophils are able to form NETs (Neutrophil extracellular traps)
via release of euchromatic DNA, which captures bacteria with its adhesive extracellular
structure, spiked with antibacterial proteins.'® Whereas the NET formation is important for the
hindrance of severe infections, it can also lead to hyperergic inflammation (second burn) by
chemoattracting further pro-inflammatory immune cells to the site, leading to excess
inflammation and furthermore exaggerated NET formation, which leads to serious tissue
damage.’

Monocytes differentiate into two forms of macrophages: the responsive and the inflammatory
macrophage.'? First pro-inflammatory macrophages (M1) are mostly present in the first stages
of wound healing.™® In later stages of wound repair a shift to anti-inflammatory macrophages
(M2) takes place and is associated with more efficient wound closure, especially in subjects
with diabetes.'® Macrophages digest cell debris via phagocytosis, yet a crucial factor of wound
healing is their secretion of cytokines and growth factors: e.g. tumor necrosis factors (TNF,
especially TNF-a), PDGF, interleukins (IL) and TGF-B.*?> The secretion of numerous pro-

inflammatory cytokines such as TNF-a or IL-6 is executed by M1-type macrophages and is



important for first wound cleansing, whereas pro-angiogenic factors as VEGF-a and anti-

inflammatory factors (e.g. IL-10) or TGF-B is more associated to M2-type macrophages.'®'”

In the proliferative phase these growth factors are leading to tissue proliferation, fibroblast
collagen production and promotion of endothelial cells to drive angiogenesis in the granulation
tissue to form a vascular nutrient supply for better wound healing.”-'® Fibroblasts are the key
players in this phase and appear at around day two or three after injury.® Special myofibroblasts
lead to constriction of the wounded area and remodeling of the scar tissue.'®

Another effect of the increased capillary permeability is the transport of proteins from the blood
vessels to the wounded tissue and thus fibroblasts to migrate into the damaged tissue area,
attracted by chemotactic substances secreted by extracellular matrix (particularly produced by
fibronectin and hyaluronate).’? Fibronectin receptors on fibroblasts act as an scaffold and
enable cells to migrate, by binding to actin filaments.'? The activated fibroblasts synthesize
collagen and proteoglycans, which is further enhanced by EGF and TGF-B secreted by

macrophages.'?

Angiogenesis in the destroyed area is necessary for adequate blood supply and starts with the
migration of endothelial cells, which form capillary networks under the influence of FGF and
TGF-B."? If angiogenesis is inhibited, wound healing fails and fibroblasts cannot migrate, which
is the pathogenensis of arteriolosclerosis obliterans or other forms of ischemic ulcers.® The
regulation of angiogenesis also depends on the oxygen level in the surrounding tissue, while

hypoxia drives angiogenesis, higher levels of oxygen can stop neo-angiogensis.? 12

This reduction of neo-angiogenesis is characteristic for the maturation phase and can be seen
macroscopically as a less hyperemic scar.'? In the maturation phase reorganization of collagen
fibres to increase strength and reform the structure of normal skin is the main goal.® It should
be mentioned, that scar tissue will never demonstrate an exact replica of normal skin with all
its complex structures, yet can resemble it, to a certain amount.®

In the maturation phase the collagen type Il present in new wounds is converted into the more
mature collagen type | form, yet the conversion of collagen in wounds can be a process lasting
for up to two years.'>' The scar formation varies between individuals according to their age,
wound location, pathogenesis of the wound and duration of inflammation (especially when it

comes to wound infections).® Re-epithelialization is an attribute of successful wound healing.?

If these delicately orchestrated processes fail, inadequate wound healing with all concomitant
negative effects take place.?’ Insufficient wound healing, especially in patients suffering from

diabetes, may lead to infections, osteomyelitis and even amputation.?’
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One factor that may prevent physiological wound healing in chronic non-healing ulcers is
increased colonization of bacteria and fungi of the skin.?® This may lead to a constant pro-
inflammatory signal, which is important in the first phases of wound healing, yet inhibits the
later remodeling phases.?13.22

Another reason for deficient wound healing is an error in angiogenesis, which generates a lack
of nutrient transport, necessary cell migration and less oxygen supply in the damaged area.??
Moreover a dysfunctional immune system or deranged cytokine environment inhibits the shift
from the pro-inflammatory to the anti-inflammatory phase, necessary for adequate collagen re-
organization and scar-formation.'® In wound healing neutrophils act as first responders and
eradicators of bacteria, due to cytokine stimulation e.g. via IL-8.'® These neutrophils are
phagocytised by macrophages at the transition point to the anti-inflammatory phase.® If this
phagocytosis never occurs, the ongoing pro-inflammatory process prevents remodelling of the

extracellular matrix.'®

Chronic non-healing wounds are a rising challenge on an individual level, as pain, disability to
work and the quality of life is compromised, on the other hand on a socioeconomic level, as
around 2,4 to 4,5 million patients in the United States alone are facing this problem.?*26 The
costs for wound treatment products is estimated to reach 25 billion $ annually.?*?” Seeing
these numbers, searching for successful treatment options seems to be an investment into the

future and are necessary to accomplish better outcomes to this unmet need.?’

The role of cytokines and growth factors (paracrine or endocrine) as drivers of fibroblast
activation, collagen production and secretion of chemoattractants in wound healing
demonstrates its importance for the regenerative research branch with promising results as

potential therapeutic targets.® 12192829

8.3 Tissue regeneration concepts using
cell therapy

At sites of damage, trauma and cell death, inflammation and healing are essential for the
survival of multicellular organisms.?® To support the body's capacities to overcome these

malfunction is the aim of regenerative medicine.

Regenerative medicine, aims to restore damaged or malfunctioning tissue. * It has become a

globally emerging branch in different research fields in the last century.>® Despite striking



advances in treatment regimens for organ failure, surgical interventions and solid organ
transplantation, regeneration and restoration of injured organs, in particularly the myocardium,
kidney, peripheral and central nervous system, lung and skin still remains a tremendous

problem.?!

In this thesis we will focus on the developmental steps of cell-based regenerative medicine
and its origin in the research area of myocardial infarction and its adaptation for wound healing

as for both the angiogenic potential is of crucial importance.3%3°

Cell based therapies fulfill various concepts of function, for example as substitute of damaged

or destroyed cells.?®

One of the success-stories of regenerative medicine are solid organ transplantations. Yet the
transplant patients have to face constant immunosuppression, as the immune system is
recognizing the exogenous tissue.?” Even under adequate immunosuppressive medication for
years the transplanted organs are facing terminal organ failure at some point of its life-span

and re-transplantation must be performed, if possible.3"-38

Yet the dream to transplant single cells, which differentiate into the needed tissue and fully
compensate its functions remains. Mesenchymal stem cells (MSCs) appeared to be the ideal
substance for regenerative medicine.*® Due to their ability to differentiate in various other cell
types (among others: cardiomyocytes, myocytes, osteoblasts, chrondrocytes and
adipocytes).***2 MSCs can be obtained by isolation from adipose tissue after plastic surgery,

umbilical cord tissue of newborns or aspirated from bone marrow.*'

The idea of cell-based therapies as surrogate was highly investigated in relation to myocardial
infarction, as a source of regeneration of once damaged cells due to hypoxia.*® The beginning
of cell based therapy was set as the finding that certain cells are capable of developing cardiac-
like myocytes.***% As an attempt autologous myoblasts from the rat tibialis anterior muscle
were transplanted in a rodent model after induction of myocardial infarction.*® Surprisingly the
left ventricular ejection fraction elevated in the group with the transplanted myoblasts.*® These
experiments were implemented in humans via catheter-based injection of myoblasts from the
quadriceps muscle.*” Yet after promising results, the fact was revealed that the transferred
muscle cells could not function as cardiac myocytes, lacking the contractile rhythm needed to

be a real surrogate.*® The reason for the mild beneficial outcome of patients remained a secret.

In wound healing the addition of MSCs lead to enhancement of re-epithelialization.**° Felanga
et al was able to show, that the addition of MSCs in fibrin spray on dermal wounds lead to
accelerated wound closure.®® Moreover Wu et al. demonstrated, that MSC application in a

murine model lead to a faster wound closure by differentiation and ameliorated angiogenesis.®’
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The mode of action behind the increased cutaneous wound closure seems to be explained by
neovascularization and angiogenesis growing into the non-vascular fibroblast scaffold built
during wound healing.%? Endothelial progenitor cells derived from bone marrow played an

important role in vessel formation in the adult organism.5354

Neovascularization can be induced by two miscellaneous mechanisms: improvement of
sprouting of available resident endothelial cells (angiogenesis) or the migration of endothelial
progenitor cells (EPCs) derived from bone marrow to build new vessels (vasculogenesis).> In
diseases with ischemia and inadequate vascularization such as myocardial infarction,
peripheral artery disease, stroke and impaired wound repair the positive effect of transplanted
EPCs could be revealed.’?% Yet the exact mode of action of this effect on ameliorated
vascularization remained concealed, as similar to the MSCs also the EPCs could not

differentiate into functioning vessels.

Holzinger et al. isolated peripheral blood mononuclear cells (PBMCs) of heparinized blood
from patients with non-healing wounds and dripped it on their chronic ulcers.®® As a result the
mean healing time was reduced to 4,6 weeks in the group treated with PBMC, compared to
8,1 weeks in the control group.%® Holzinger et al. could show this in a try and error concept.>®
Yet the hypothesis behind the successful improvement of the ulcers was not revealed for a

long time.

Insufficient wound repair was the consequence of a lack of nutrients and oxygen, as well as
the inadequate proliferation of keratinocytes.?'213% But even more important is the fact, that
without inflammatory cells there is no sufficient wound healing.®'213% |n patients with chronic
ulcers the transport of pro-inflammatory cytokines and nutrients to the wounded area, due to
ischemia was the reason for the deranged healing process.® 2135 The lack of chemo attractant
gradients as well as reduced migration of leukocytes was caused by insufficient blood
sustenance.®'2135¢ Secreted pro-inflammatory factors by leukocytes seemed to make a

difference.812.13.56



Table 2. Mean period of treatment until ulcer closure

All CAOD PTS
MNC Control MNC Control MNC Control
n=233 n =230 n=21 n=20 n=12 n =10
Weeks until healed (mean) 47119 §1+1.2 5020 8.4+21 39+14 7.7£35
p<0.01 p<0.01 p<0.01
Healed after 75 days 29 (87%) 17 (56%) 18 (85%) 10 (50%) 11 (91%) 7 (70%)

Treatment was discontinued after 75 days if healing had not occurred. Values are mean + standard deviation. Statistical analysis used the
Student’s f-test.

Eur ] Vasc Surg Vol 8, May 1994

Fig. 1. Time of wound healing after treatment with PBMC (mononuclear cells MNC) 5657 shown in the table is the
time needed for wound closure ith and without the use of peripheral blood mononuclear cells
(MNC) in all chronic wounds, patients with chronic arterial occlusive disease (CAOD) and post-
thrombotic syndrome (PTS).%6:57

Also, other researchers treated ulcers by addition of immune cells. Danon et al applied
macrophages on wounds of elderly patients, to improve the healing capacity.®® He could depict
wound closure in 27% of treated patients compared to 6% in the control group.%® Danon
hypothesized, that the secretory pattern of activated monocytes and macrophages lead to
ameliorated angiogenesis, cell migration and collagen production.®® He even developed a

method to further enhance their secretion capacity by hypo-osmotic shock.®

8.3.1 From cell based to cell free-therapy

Gnecchi was a pioneer to assume, not only the direct cell-cell interaction being the source for
the tissue regeneration, but the secretome, released by the cells acting via paracrine

mechanisms.f°

What is the secretome of cells? The secretome in in vitro experiments is defined as the
conditioned medium of stimulated or unstimulated cells.®" It consists of a complex plethora of
lipids, extracellular vesicles, apoptotic bodies, cytokines, chemokines, other proteins, micro
ribonucleic acids (miRNAs) and carrier cargo with small non-coding RNAs secreted by the cells

into the medium, during cultivation.5'-63
Over time more and more researchers drew the same deduction:

In the study of Javazon et al. stromal cells from progenitor cells purified from bone marrow
improved neovascularization and re-epithelialization in a dermal wound model, compared to
bone marrow alone in a murine model. 8 What was rather suprising, that the GFP-marked
stromal cells could not be found in the granulation tissue or endothelial cells, allowing the

conclusion, that the result was not reached by transdifferentiation.®*



Another cause for the assumption, was the fact, that only 2% of injected stem cells were
reaching the heart in a myocardial infarction model, and therefore could not be solely
responsible for the beneficial regenerative effects.®> Moreover intracoronary stem cell injection
in some cases resulted in blood flow reductions, with the pathogenesis of mesenchymal stem

cells obstructing small vessels leading to extension of ischemic myocardium.%®

Manon Desgres et al. tested extracellular vesicles derived from cardiac progenitor cells in
doxorubicin induced cardiomyopathy as model for chemotherapy-induced cardiotoxicity. " He
could reveal that intraperitoneal injection of the extracellular vesicles in a rodent model

ameliorates circumferential cardiac strain and preserved systolic and diastolic volumes in rats.
67

The importance of paracrine effects of bone marrow derived stem cells was further enhanced
by the study of Uemura et al., in which preconditioning in culture resulted in less apoptotic
cardiomyocytes after myocardial infarction.®® The regenerative potential of ischemic tissue was
not only limited to myocardium, but could be verified for limb ischemia either.®® In rats the
application of conditioned medium of mesenchymal stem cells increased proliferation of
smooth muscle cells as well as endothelial cells.®® These findings were not solely created by
the impact of single cytokines, such as the well-known vascular endothelial growth factor
(VEGF) or basic fibroblast growth factor (bFGF) found in the conditioned medium, as it was
revealed by anti-body blocking experiments.® In these experiment the impact of VEGF and
bFGF was abolished by antibody binding, yet the results remained the same with enhanced

cell proliferation.®®

Growth factors also seemed to play an important role in dermatological wound healing. In a
gangrenous wound of an elderly, diabetic individual, the wound was treated with a mixture of
PBMC and added basic fibroblast growth factor.”® This lead to wound closure within six months

without further ulceration in the follow-up controls.”



Adult stem cells « Embryonic » stem cells
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Cardiac committed cells  Paracrine factors

The evolution of the stem cell theory for heart failure

Fig. 2. Developmental stages of stem cell therapy through the example of cardiac insufficiency. Adapted
from Silvestre et al. 7' The hope of early studies was a differentiation of bone marrow (BM),
adipose tissue (AT) or peripheral blood (PB) derived stem cells (SC) to differentiate into active
myocardial muscle cells, via electrical stimulation. The next step was to use cardiac stem cells
and finally to culture and trasnplant induced pluripotent stem cells (iPSCs) or embryonic stem
cells ESCs.”" Yet even this approach was abolished as the cells did not reach their goal after
intravenous application or failed to proliferate and transform into myocardial muscle.”
Astonishingly a beneficial effect was detected and even potentiated by administration of the
supernatant of the stem cells, leading the studies into a different direction with cytokines and
chemokines as the key players in damage repair.”"

It became more and more clear, that not the applied cells were responsible for the beneficiary
wound healing effect, but the growth factors, chemokines or cytokines secreted by the cells.
This evolution of cell based to cell-free regenerative medicine was verified by Walter et al.”
He proved, that the conditioned medium of MSCs derived from bone marrow accelerated
dermal wound healing in a scratch assay.”? In this study keratinocytes and fibroblasts were co-
cultured with the supernatant of MSCs and the growth was significantly enhanced.”
Intriguingly not the proliferation was the predominant mode of action for the wound healing,
yet the enhanced cell migration, driven by cytokines as RANTES, MCP-1, IL-8, IL-6 and TGF-

B-72
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It was further speculated that micro vesicles present in the conditioned media were responsible
for the regenerative effect after kidney ischemia.”® To test this hypothesis micro vesicles
gathered from mesenchymal stem cell culture media were injected intravenously after
ischemia—reperfusion injury and acted cytoprotective (apoptosis prevention) and enhanced

proliferation of tubular epithelial cells.”

These findings let us hope to find a potential drug that combine cytoprotective and pro-
angiogenic effects. Yet the answer which player in the secretome (cytokines or micro-vesicles

or the combination) is the most potent remains to be elucidated.

8.3.2 Preconditioning of cell-therapy

To further maximize the positive effect of the cell secretomes and utilizing the cell as bioreactor
was the next step in the secretome research field.”* A common approach to achieve this goal
is hypoxia, as dermal wounds often display lower oxygen levels.”* Zhang et al showed, that
mesenchymal stem cells derived from umbilical cords secreted exosomes after exposure to
hypoxia.”* These exosomes enhanced endothelial migration and proliferation.” Furthermore
apoptosis induction of endothelial cells was diminished compared to stimulation with normoxic
secretome of MSC.”* As probable mode of action the microRNA-125b, which is transported in
exosomes could be identified. MicroRNA-125b inhibited apoptosis via reduction of tumor

protein p53 inducible nuclear protein 1-expression.’

Another study accomplished faster wound healing in a murine wound model by pre-stimulation
of MSCs with TNF-a and IFN-y.”® This pre-stimulation led to induced angiogenesis in the

wounded skin and increased VEGFC levels.”®

Su et al stimulated melanoma cell lines with IFN-y to acquire higher amounts of PD-L1
containing exosomes.”® These exosomes were obtained from the conditioned medium and
applied on epidermal cells and fibroblasts and on murine artificial wounds.”® This stimulation
with pre-conditioned exosomes lead to faster re-epithelization, increase in epidermal cell
migration via the PD-1 immune checkpoint pathway.”® The pro-inflammatory cytokine
production of CD8* T-cell was reduced upon stimulation with the PD-L1 enriched extracellular

vesicles either.”®

The next developmental stage of the paracrine effect hypothesis is the fact that dying cells
could secrete various different cytokines and chemokines.”” Thum et al. promulgated the
hypothesis that the improvement of cardiac function was induced, due to the
immunomodulatory effect of stem cells dying of apoptosis without experimental evidence.””
Cells of the myocardium that are damaged by the hypoxic conditions of an acute myocardial

infarction (AMI) release heat shock proteins, that activated via toll-like receptor protein-4 (TLR-
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4) dendritic cells and tissue resident macrophages.’’-"® The macrophages further enhance the
tissue damage by secretion of pro-inflammatory cytokines and the dendritic cells leads to the
differentiation of effector-T-cells by antigen presentation and migration of these T-cells into the
infarct area promoting local inflammation.”””® Apoptotic cells on the other hand expressing
phosphatidylserine on the outer layer of their cell membrane diminish the activation of dendritic
cells and macrophages by interaction with their phosphatidylserine receptors, which results in
the secretion of anti-inflammatory cytokines, as interleukin-10 (IL-10) or transforming growth
factor- B (TGF-B).8%%2 Moreover the activation of T-cells by antigen presenting dendritic cells is
decreased and regulatory T-cells are activated instead.?2® The so reduced inflammation of
the hypoxic area leads to less scar formation, due to IL-6 down regulation and pro-

angiogenesis, due to increased prostaglandin E2 release of apoptotic cells.””:78:81.84

The cardiac protection of stem cells could be enhanced by the addition of the supernatant of
apoptotic PBMC (APOSEC) in a study by Winkler et al.® In this study a porcine myocardial
infarction was induced and cardiosphere derived cells with or without APOSEC were injected
15 minutes after reperfusion.®® After one month a 2-deoxy-2-(18 F)-fluoro-D-glucose-positron
emission tomography-magnetic resonance imaging was done, showing less scarred area in

the APOSEC treated group, compared to the control group.®®
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Fig. 3. Theory of the dying stem cell adapted from Thum et al.”” Depiction of ischemic damage induced by
myocardial infarction, leading to Toll-like receptor 4 (TLR-4) expression via heat shock proteins
(HSPs) and thus activation of dendritic cells (DC) and tissue resident macrophages, which drive
local inflammation.”” Apoptotic cells (both from application of ex vivo cells or internal production)
bind to phosphatidylserine (PS) and phosphatidylserine-receptors (PS-R) on cells of the immune
system and lead to secretion of anti-inflammatory proteins, such as TGF-g and IL-10.77
Additionally they diminish the activation of Th1 cells triggered by dendritic cells. As a result less
regulatory T-cells (Treg) drive inflammation at the site of hypoxic damage.””

A positive effect of apoptotic cells was not only seen in stem cells, but also in autologous blood
cells driven into apoptosis by oxidative stress.®®®” These apoptotic blood cells were
intramuscularly injected in patients suffering from ischemic foot condition due to peripheral
arterial occlusive disease.?®® After injection the patients developed increased blood flow in

the post-ischemic foot.%6:8”

Moreover the application of autologous blood samples in patients with chronic heart failure
exposed to oxidative stress lead to promising results with significantly diminished risk of death

and hospitalization, compared to the placebo group in acute myocardial infarction.8®

Our working group could show, that ionizing irradiation induced apoptotic cell death in
peripheral blood mononuclear cells (PBMC).8%° The conditioned medium of these cells
enhanced wound healing and angiogenesis as well as vasodilation in a myocardial infarction

model .80
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These studies inspired many researchers to test the effect of the secretome of stressed or
dying cells especially in regenerative medicine.®' Of course these examples make clear, that
these preconditioning concepts need to be done outside the human body, as treatment with
irradiation, hypoxia or pro-inflammatory cytokines on a systemic level could lead to serious

adverse events.

8.4 Secretomes of various cell types in
wound healing

A pro-inflammatory state in the first phase of wound healing is important for pathogen
clearance, yet in the following phases this excess of inflammation need to be converted into
anti-inflammation to path the way for extracellular matrix and collagen repair.’® Cytokines and
chemokines seem to have a crucial role in the initiation of these processes.' Suggesting cells

for regenerative medicine, which are capable of secreting such factors.

In fact secretomes of various cell types were shown to enhance migration of immune cells to
the wounded area and change the cytokine environment of the affected skin. 7478 In the
beginning mostly stem cells were used for production of conditioned medium.®2% As positive
effects on wound healing were found as a result of addition of various kinds of growth factors,
the focus was layed on different cell types.®* As TGF-B can be produced by keratinocytes,
platelets, macrophages or fibroblasts and EGF is secreted by fibroblasts, keratinocytes and
macrophages, both essential parts of granulation tissue remodeling and re-epithelialization.%

the idea to use cells, which are easier to obtain, than stem cells was born.

Thus the conditioned medium of fibroblasts was used and really improved wound healing by
pro-angiogenic and anti-inflammatory mechanisms.% A positive effect was seen either for the

secretome of epithelial cells, but the effect was driven by exosomes (extracellular vesicles).%

As the activation of immune cells have a delicate influence on regeneration and wound healing,
Laggner et al investigated dendritic cells stimulated with the secretome of PBMC and the
resulting differentiation and maturation of this dendritic cells.®” After the addition of the PBMC
secretome the maturation of dendritic cells was diminished and the differentiation was inhibited
either.”” Regarding the pro-inflammatory effects of CD1a* cells as phagosome development,
as well as antigen-presentation the treatment with PBMC secretome lead to drastic decrease
in the expression pattern of the necessary genes, which could also lead to a more anti-

inflammatory environment.®’
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Furthermore Laggner et al. revealed that treatment with the secretome of apoptotic PBMC
could reduce mast cell activation, necessary for allergic reactions.®® The treatment of in vitro
dermal mast cells resulted in secretion of anti-inflammatory signals and diminished the release

of inflammation driving a-IgE-induced mediator of these mast cells.%

Laggner et al was able to show, that the type of irradiation in a direct comparison of y-irradiation
and electron-irradiation on PBMCs did not show any difference in the production of
regenerative paracrine factors.®® The secretion pattern in concern to the composition of
extracellular vesicles, lipids, proteins and on a transcriptome level resembled to a high

degree.*®

The secretome of apoptotic cells seemed to have an effect on microvascular obstruction, as
showed in a myocardial infarction model.®® This beneficial effect, may be evoked by the
prevention of aggregation of platelets accompanied by a vasodilating function.®® This
vasodilation is conducted by higher INOS and p-eNOS activation in coronary arteries, after
stimulation with APOSEC.%°

Another interesting study could show, that the secretome of PBMC decreased neutrophil
extracellular trap formation (NET) of neutrophils.’® These findings could give a hint to the
mechanisms of action of cell secretomes on tissue regeneration.’® NET-formation is
necessary for adequate repulsion of pathogens and infection in wounds, however uncontrolled

NET activation leads to decreased wound healing, due to reactive oxygen species. 01102

Surprisingly also pro-inflammatory factors secreted by macrophages displayed positive effects
on wound healing.'"® Also pre-conditioning of mesenchymal stromal cells with pro-
inflammatory substances e.g. TNF-a and IFN-y induces cells to secrete pro-angiogenic factors,

which ameliorate wound healing.”

The secretome of PBMC may have addiational modes of action to increase wound healing, as
Copic et al. could reveal.”® In a single cell sequencing analysis PBMC stimulated with the
supernatant of PBMC (cultured for 24h) showed signitificantly increased expression of genes,
that are important modulators of angiogenesis, e.g. VEGFA or SERPINB2.'% This is
furthermore important for successful wound healing, which indicates a role of cell-cell cross-
talk in PBMCs, necessary for regeneration.'® Moreover PAI-2 (plasminogen activator inhibitor
type Il), which is encoded by SERPINB2 is an important regulator for the endothelial barrier
function, which leads to the efflux of immune cells to the wounded area and thus increased
inflammation.'®* After stimulation with PBMC secretome the thrombin-mediated leakage of the

endothelial barrier function could be inhibited.'%
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It became clear, that not only growth factors are responsible for the improved wound healing,
yet a combination of pro-inflammatory, anti-inflammatory, pro-angiogenic proteins and factors
affecting matrix-metalloproteinases and different collagens are most efficient. Cells that are
capable of secreting all these factors at once, are for instance peripheral blood mononuclear

cells 105,106

8.5 Peripheral blood mononuclear cells

Peripheral blood mononuclear cells (PBMCs) is a collective term of various different cells,

consisting of natural killer cells (NK-cells), T-cells, B-cells, monocytes and dendritic cells.%1%

The T-cells can be differentiated into CD4+ and CD8+ cells. Regarding the CD4+ cells further
discrimination into Tfh, Treg Th1, Th2, Th9, Th17 and Th22 cells with different functions is
possible.'”"""" For instance pro-inflammatory cytokines e.g. INF-y and TNF are produced by
Th1 cells, which play a role in delayed hypersensitivity responses, trigger monocyte-activation
and increase cell cytotoxicity, especially upon encounter of intracellular bacteria.'®”""
Regulatory T-cells (Treg) express Forkhead-box-protein P3 (FOXP3) and release anti-
imflammatory cytokines as IL-10 and TGF-B."'"" Th17 cells secrete IL-17, which acts as
driver for autoimmune diseases, e.g. psoriasis or experimental encephalitis.’”-'"" Th2 cells
produce IL-4 and IL-1B which is crucial for immunoglobulin G1 and E formation and B-cell
survival. Tfh cells direct the proliferation and activation of antibody-forming B-cells.'%-1" Th22
secrete IL-22 and Th9 cells IL-9, which is linked to allergies, asthma and other autoimmune

diseases. 071"

CD8+ T-cells produce IL-12, IFN-y,TNF-a and act cytotoxic, pro-inflammatory and antigen-
specific, yet can also act against cancer growth.'2'3 Moreover they seem to be involved in

atherosclerosis.''®

Follicular B-cells are activated via antigen-presentation of T-cells and react to Toll-like
receptors, CD40 and B-cell receptors and may express MHC-Il and CD27, resulting in plasma
cell or memory B-cell transformation.'#''® Marginal zone B2 cells play a role in the immune
reaction to lipids and act T-cell independent to pathogens.''*''® The function of B1 B-cells is

not yet characterized in humans and still needs to be elucidated.'*""®

Dendritic cells stimulate T-cells and are characterized by expression of MHC | and Il and trigger
antigen-specific reactions of the immune system and consist of mDC (derived from monocytoid

precursor cells, pDC (plasmacytoid cells) and cDC (classical dendritic cells).""-'22 mDCs are
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drivers of inflammation and migrate to inflammation areas and are even used in cancer
treatment recently."'”-'22 pDC are responsible for antigen-presentation and IFN-I production.

cDC are the major antigen-presenting cells especially to CD4+ cells. 7122

Monocytes can also be divided in classical (CD14++CD16-, mostly involved in phagocytosis),
non-classical (CD14+CD16++, pro-inflammatory and antigen-presenting function),
intermediate (CD14++CD16+, having inflammatory functions, as well as phagocytic) and CD40
positive cells. '2>125 The CD40+ monocytes have a strong pro-inflammatory function and are

related to chronic kidney disease.'?*12°

Natural killer cells (NK) can be divided in CD56'°*CD16"" cells, which merely act in a cytotoxic
manner, or in CD56""CD16"9"ow cells, which secrete a plethora of pro-inflammatory

cytokines.'%

These different cells of the immune system communicate, inhibit or induce its various functions
in a direct or paracrine manner. For example, if mDC are not capable of producing an adequate
amount of TGF-B, which is important for wound healing the activation of CD4+ (Th1 and Th17)

and CD8+-T-cells will be increased.%®

A big advantage in using PBMC for research or therapeutical usage is the broad availability as
waste product of thrombocyte concentrate production.’?” Here blood samples gathered from
healthy donors are divided into their different components, whereas the thrombocytes are
obtained and further processed, the PBMC are discarded and may be used for research
purposes.’?” This makes them a cost-efficient and easy obtainable resource for future

therapeutic applications.

8.6 Types of programmed cell death

At the beginning of the 19" century, Virchow described a specific type of cell death termed
necrosis which quickly became the main topic for several research groups worldwide.?® An
austrian researcher (Pischinger et al.) described a so-called “Leukozytolyse” 2910 g

death/consumption of leukocytes in blood smears first described in 1957129130

While necrosis describes an uncontrolled cell death, a regulated form of cell death, so called
apoptosis, was later discovered by Lockshin and Williams.™""3* Today, a plethora of
programmed cell death types are known, for example ferroptosis, entotic cell death,

autophagy-dependent cell death, immunogenic cell death, lysosome-dependent cell death,
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mitochondrial permeability transition (MPT)-dependent necrosis, pyroptosis, parthanatos,

NETosis associated cell death (Figure 4). 13%1%
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Fig. 4. Molecular mode of actions of cell death: names and distinct types suggested by the Nomenclature
Committee on Cell Death published in 2018 and adapted from Lorenzo Galluzzi et al 135
Shown are the different types of regulated cell death (RCD). Depicted as an example of various
morphological characteristics a scheme of an apoptotic and necroptotic cell is depicted in the
middle of the figure. Abbreviations: mitochondrial permeability transition (MPT), autophagy-
dependent cell death (ADCD), lysosome-dependent cell death (LDCD) and immunogenic cell

death (ICD)

Regulated cell death usually occurs upon either of two main triggers including harmful
exogenous influence or renewal and development of tissue. While such exogenous damaging
stimuli aim for targeted physiological degradation, regulated apoptosis occurs during various
physiologic processes as for example hand and finger development during embryonic stage.'®
Furthermore apopotosis is very important for gametogenesis of oocyte and spermatozoid
maturation.”™” The signal for apoptosis induction may be DNA damage or unreparable
mutations.”®” Apoptosis appears to be of vital importance for a broad range of normal
developmental processes since diminished apoptosis in drosophila melanogaster is
accompanied with abolished formation of wings, legs and nervous or gastrointestinal system.
138139 In murine models, downregulation of specific apoptosis triggering genes (e.g. Bax and
Bac'?), lead to limited developmental abnormalities, due to various alternative activation

mechanisms of downstream effectors of apoptosis induction, or activation of other non-
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apoptotic forms of cell death. 0" Furthermore, dysfunctional apoptosis activation

implements autoimmune disease, viral infection and cancer. '’

Apart from the crucial involvement in developmental processes, apoptosis further serves as
safety mechanism eliminating potentially harmful cells. Upon exposure to exterior stress
signals dying cells secrete paracrine factors , known as damage-associated molecular patterns
(DAMPSs) or alarmins, to adjacent cells, thereby activating the immune system as first line of

defence to bacteria, cancer or trauma to enhance wound healing. %744

Classification of various types of cell death based on morphological characteristics lead to the

following three categories: '*°

1) Type | (e.g. apoptosis): pyknosis and nuclear fragmentation, whereas the
plasma membrane stays intact and forms blebs, also known as apoptotic
bodies, which are engulfed by phagocytosis of immune cells and ultimately
degraded in the lysosome of for instance macrophages

2) Type Il (e.g. autophagy): vacuolization in the cytoplasm ending by phagocytosis
and lysosomal degradation

3) Type lll (e.g. necrosis): without blebbing or vacuolization as type | and Il, leaving

cells with ruptured cell membrane and without phagoytosis

This nomenclature was deficient since it did not consider function, triggers of cell death,
secreted factors , impact on surrounding cells or activated signalling pathways. With growing
knowledge of mechanisms and function the Nomenclature Committee on Cell Death (NCDD)
came up with a new definition in 2005.3%

The resulting nomenclature is depicted in figure 4 above. Based on this nomenclature the

different types of cell death relevant for this thesis will be discussed below.

8.6.1 Apoptosis

Apoptosis is induced via caspase activation leading to a controlled cell death, morphologically
characterized by karyorrhexis, pyknosis and most characteristically the blebbing of the plasma
membrane.'® We discriminate two forms of apoptotic cell death: 1) intrinsic and 2) extrinsic

apoptosis. '3

8.6.1.1 Intrinsic Apoptosis

During intrinsic apoptosis the cell membrane remains intact and to some extent even cellular
metabolic activity.’*® The final aim of an apoptotic cell is to be phagocytosed by macrophages
or other immune cells.'® Due to the lack of phagocytic cells in vitro, a nearly necrotic form also

known as secondary necrosis with degradation of the plasma membrane can be observed in
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cell culture. This degradation is associated with pore formation initiated by gasdermin E
(DFNAS5), 146147

Intrinsic apoptosis is initiated by a group of proteins containing domains of B-cell
CLL/lymphoma 2 (BCL2) homology (BH), which can be divided in three sub fractions
composed of the pro-survival branch (e.g. MCL1, BCL-2 itself and BCL-X.); the effector protein
family that consists of e.g. BCL2 associated X (BAX) and the BCL2 antagonist/killer 1 (BAK);
or the pro-apoptotic BH3-only proteins, as for example PUMA (P53 upregulated modulator of

apoptosis) and BID (BH3 interacting-domain death agonist). 148149

Pro-apoptotic regulation mechanisms

The BH3 proteins act as direct or indirect regulators of the pore forming effectors. 49150 BAK
or BAX induce pore formation in the mitochondrial membrane.'°'%° The mitochondrial outer
membrane permeabilization (MOMP) results in apoptosis and is an irreversible
process.'49150.145 These pro-apoptotic BH3-only proteins are upregulated after DNA damage
caused by endogenous metabolites, alimentary or environmental carcinogens, or
chemotherapy.’'%® As soon as the pro-apoptotic signalling outweighs the anti-apoptotic
players, e.g. MCL1 or BCL-2 that inactivate BH3-only proteins by direct binding, the effector
proteins are activated.®'° The effectors BAK or BAX can be activated by the BH3-only
proteins including BH3 interacting domain death agonist (BID) and BCL2-interacting mediator
of cell death (BIM) in a direct manner and result in pore formation in the outer mitochondrial
membrane (OMM), leading to the release of cytochrome c¢ (Cyt c) further known as the above
mentioned MOMP.4%1%" Cytochrome c acts as trigger in the activation of the caspase cascade
resulting in apoptosis.'® Whereas BAX translocates as inactive monomer between the cytosol
and the mitochondria, where it can form active oligomers, BAK stays in the mitochondria as
inactive monomeric, membrane protein, often complexed with voltage-dependent anion

channel 2 (VDAC2), which inhibits homo-oligomerization of BAK and therefore activation.'%21%3

The activation of BAK and BAX is carried out by BH3-only proteins transcriptionally or post-
translationally, which is essential for the regulation of apoptosis.’®*'% Through this strict
regulation prevention of autoimmunity by induction of apoptosis of autoreactive T-cells
expressing T-cell receptor (TCR)-CD3 complex can be proceeded by the organism.'®*15¢ The
activation of certain BH3-only proteins is induced by transcriptional upregulation, especially in
BIM, phorbol-12-myristate-13-acetate induced protein 1 (often referred to as NOXA) and p53-
upregulated modulator of apoptosis (PUMA).54-1%6

Whereas the pro-apoptotic function of BID is triggered post-translationally.’”-'®* The above
mentioned proteins are capable of forming direct interactions with BAK and BAX and as a

consequence formation of homo-dimers of mitochondrial BAK via a BH3-in-groove
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interface.'®'-163 This dimerization in the mitochondrial membrane builds a lipidic pore in the
membrane and leads to destabilization.'®'-'83 BAX is capable of forming arcs and rings after
oligomerization leading to MOMP shown by single-molecule localization microscopy after

transfection with GFP-Bax.'6* 19

Besides pro-apoptotic activation via BH3-only proteins, auto-activation of BAK and BAX can
occur after downregulation of anti-apoptotic proteins such as BCL-2 or MCL1. ' Furthermore,
activation can occur via prolyl isomerase 1 (Pin1), which enhances BAK activation caused by

tumor suppressor p53 or diminishing the pro-survival signaling produced by binding of ATR to
BID. 166-168 169

MOMP leads to release of on the one hand cytochrome ¢ and on the other hand second
mitochondrial activator of caspases (SMAC) into the cells’ cytosol, 7172 where cytochrome ¢
attaches to apoptotic peptidase activating factor 1 (APAF 1), found on the inactive pro-caspase
9 (CASP9).170-172 Fyrther binding with ATP results in the formation of the crucial apoptosome
that initiates the activation of caspase 9.'”® This activation is realized by building homo-dimers
of CASP9 or the hetero-dimerization of APAF1 and CASP9 proteins.'4'"> The apoptosome
formation catalyses a proteolytic cascade of the executioner caspases 3 and 7 resulting in
apoptotic cell death. ¢ 77 The SMAC protein acts as pro-apoptotic regulator not only by
preventing stable binding of X-linked inhibitor of apoptosis (XIAP) to caspases, "' but also
blocking various other inhibitors of apoptosis (IAP)-family members.'”? While the deactivation
of XIAP works by direct binding, SMAC proteins (Second mitochondrial activator of caspases)
inhibit the function of c-IAP1 and c-IAP2 (cellular inhibitor of apoptosis proteins). c-IAP1 and
c-IAP2 are important for the upregulation of anti-apoptotic factors such as caspase 8 or cellular
FLICE (FADD-like IL-1B-converting enzyme)-inhibitory protein c-FLIP. 78180

The catalytic mechanisms of the executioner caspases results in the degradation of the cell
and evokes DNA fragmentation, blebbing of the cell and phosphatidylserine exposure on the
outer membrane (which is usually only located on the inner membrane), as the final result of
intrinsic apoptosis. 8183 Phosphatidylserine is a marker often used in flow cytometry to detect

apoptotic cells in extracellular stainings. '8'-183

Anti-apoptotic requlation mechanisms

The anti-apoptotic proteins from the BCL-2 family not only inhibit the activation of BH3-only
proteins by the above mentioned binding mechanisms. '8 18  Additionally BCL-2 plays an
important role in the Ca?* dynamics in the endoplasmic reticulum. '8 The BCL-2 family protein
BCL-X.increases energy metabolism efficiency by binding to the F1FO ATP synthase, thereby
enhancing the ATPase activity and diminishing the ion leak, which in turn reduces the

conductance of the membrane leak. 8”18 Another anti-apoptotic mechanism of BCL-2,
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specifically utilized by cancer cells, is the regulation of cytochrome ¢ oxidase activity and
formation of electron transport mechanisms, in consequence of increased energy demands
after oxidative stress and thus prevention of reactive oxygen species (ROS)

overproduction. 89190

The inactivation of BAK (and therefore anti-apoptotic effect) is induced by the binding of its

own C-terminal a helix to its activation spot consisting of BH1, BH2 and BH3 domains.?’

It can be assumed, that X-linked inhibitor of apoptosis proteins (XIAP) acts anti-apoptotic

through SMAC degradation in the mitochondria. '

Other inhibitor of apoptosis proteins(IAPs)s act by inducing ubiquitination and thus inhibition
of caspase activity. 9"%*Furthermore, IAPs can enhance the tumor necrosis factor-a (TNF-a)
driven ubiquitination of receptor interacting serine/threonine kinase 1 (RIPK1). ' The TNF-a-
dependent activation of the pro-survival regulator nuclear factor 'kappa-light-chain-enhancer'

of activated B-cells (NF-kB) is strongly reduced in the absence of c-IAP1 and c-IAP2. 9

8.6.1.2 Extrinsic Apoptosis

Extrinsic apoptosis is caused by extracellular stress and initiated predominantly via
dependence receptors, which are activated in the absence of its ligands or death receptors,
including for example TNF receptor superfamily members 1A, 10A, 10B and Fas cell surface
death receptor (FAS or CD95) . 19198 Apoptosis induction through death receptors is initiated
by the formation of a death-inducing signalling complex (DISC) upon ligand-stimulation of the
FAS receptor or TNF receptor superfamily member 10A and 10B (TRAIL-R1 and TRAIL-R2)
at the cytoplasmic tail of the receptor.’®%2% Upon activation and subsequent trimer formation
of FAS, TNF receptor superfamily member 1A (TNFR1), TNFR2 or TRAIL2-R1/2, further
proteins such as caspase-8 (CASP8) or caspase-10 (CASP10), cFLIP or Fas-associated
protein with death domain (FADD) are recruited to the activated receptor. While all trimers
eventually lead to apoptosis, their downstream signalling mechanism varies.'®2%° The
activated caspases induce apoptosis by either directly cleaving downstream executioner
caspases (CASP3, CASP6, CASP7) or initiate the intrinsic apoptosis pathway by cleaving
BID.199200201 The TRAIL-receptors build a complex with FADD, caspase-8 and Receptor
Interacting Protein (RIP-1) kinase upon activation.®®?'"The TNFR1-trimer can form two pro-
apoptotic cytoplasmic complexes, complex IIA, consisting of Tumor necrosis factor receptor
type 1-associated DEATH domain (TRADD), FADD and CASP8, and complex 1B, consisting
of FADD, RIP-1 and caspase-8. 2°26° Furthermore, the TNFR1-trimer can also form a pro-
survival complex composed of the anti-apoptotic c-IAP1/2, TNF receptor-associated factor 2
(TRAF2), TRAF5, TRADD and RIP-1, which activates NF-kB. 620" Although only verified for T

lymphocytes and glycosylation of FAS, the modification of death receptors affect the sensitivity
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for cell death induction of the specific cell type they are attached t0.2®® The catalytic function
of CASPS8 is triggered by the interaction of CASP8 and FADD in the DISC, leading to
dimerization of CASP8 molecules. 2°42%° Active CASP8 causes the cleavage division of c-FLIP.
and CASP8 heterodimers and give way for the CASP8 homodimerization and activation of

cleavage activities. 2%
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Fig. 5. Extrinsic cell death and its initiation and inhibitory pathways adapted from Dickens et al 20

In addition to the inhibitory capacity of c-FLIP, extrinsic apoptosis can further be inhibited by
various alternative mechanisms including for example phosphorylation of the tyrosine residue
Y3800f CASP8.2” Whereas the phosphorylation of the T273 part of caspase 8 leads to an

increase in the pro-apoptotic function. 207209

Certain cell types may escape FAS induced extrinsic apoptosis while FAS signalling inevitably
results in apoptosis in other cell types.?°”2'" In type | cells, such as lymphocytes, activation of
CASP3 and CASP7 serves as sufficient trigger for apoptosis and cannot be escaped by anti-

apoptotic BCL-2 activity or by depletion of BID.2072""

We distinguish between two cell types, where FAS can induce apoptosis: in type | cells such

as lymphocytes the activation of caspase-3 and -7 by caspase-8 is a sufficient trigger for
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apoptosis and the depletion of BID, nor the anti-apoptotic BCL-2 proteins can prevent this
step.?'%2"" This serves as crucial mechanism to avoid autoimmunity. Contrarily, type Il cells,
e.g. hepatocytes, pancreatic B-cells and certain cancer cells, may escape FAS-induced
apoptosis by XIAP and the lack of BID. 2102

In Type Il cells on the other hand, e.g. hepatocytes, B-cells of the pancreas or certain cancer
cells the cleavage of caspase-3 and -7 can be averted by XIAP and a lack of BID (which is
cleaved by caspase-8) can avoid extrinsic apoptosis.?!'?'* Cleaved BID (truncated BID; tBID)
acts as a BH3-only protein to activate BAK/BAX in the OMM.2'#2¢ |n addition to these escape
mechanisms, CASP10 may also act anti-apoptotic by actively dissociating CASP8 from DISC,
whereas the atypical cadherin (FAT1) prevents the association of caspase-8 to the DISC after

FAS activation.2'7-218

As shown in figure 5, the activation of TNFR1 is not solely inducing apoptosis, yet after
polyubiquitination of RIPK1 by c-IAP1/2 in the complex | or linear ubiquitin assembly complex
(LUBAC) a pro-survival signal is sent to the cell.?'%-22' RIPK1 can lead to survival by activating
(phosphorylation) NF-kB and on the other hand inactivates the inhibitors of NF-kB (IkBa and
B) by phosphorylation.202222223 Fyrthermore the phosphorylation of RIPK1 by IKK, transforming
growth factor-B-activated kinase 1 (TAK1) or another kinase known as mitogen-activated
protein kinase-activated protein kinase 2 (MAPKAPK2) inhibits its interaction with FADD and
caspase-8 resulting in the inhibition of apoptosis.??#??” On the contrary deubiquitylation of
RIPK1 for instance by CYLD (CYLD lysine 63 deubiquitinase) leads to enhanced association
of RIPK1 with FADD and capsae-8 to the complex Il driving extrinsic apoptosis, in the
presence of IAP-inhibitors known as SMAC-mimetics.??322° Another mechanism of complex I
formation is the ubiquitylation of TRAF2 by HECT domain E3 ligase (HACE1), intriguingly a
lack of HACE1 does not impair the TNFR1 induced RIP1/RIP3 assembly important for

necroptosis induction.?%°

Extrinsic apoptosis induction is crucial for multicellular organisms, a lack of membrane bound
FAS ligand leads to a activation of pro-survival and pro-inflammatory pathways and these mice
develop an autoimmune phenotype similar to lupus.?®" Tumor necrosis factor-related
apoptosis-inducing ligands (TRAIL) with the help of LUBAC can prepare the ground for both,
apoptosis by building the DISC and pro-survival pathways by activation of NF-kB, extracellular

signal-regulated kinases (ERK) or p38 among others.232:233

The second form of death receptors are the dependence receptor family including 20 different
proteins and can be activated by the absence of ligands.’® Among these receptors we can
find Sonic Hedgehog receptors Patched (Ptc), netrin-1 receptors DCC (deleted in colorectal
carcinoma), unc-5 netrin receptor A (UNC5A-D), UNC5H1-4, neurotrophin receptor
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neurotrophic receptor tyrosine kinase 3 (NTRK3), TRKA and TRKC, nerve growth factor
receptor p75NTR insulin receptors and insulin-like growth factor (IGF1r), Neogenin and many
more. 234235 196 |f for example the DCC receptor is cleaved via caspase-3, due to lack of ligands
an association of APPL1 (Adaptor protein, phosphotyrosine interacting with PH domain and
leucine zipper 1) and caspase-9 is built leading to caspase-cleavage and apoptosis.?*® Patched
triggers apoptosis by complex formation of four and a half LIM domains 2 (FHL2 or DRAL),
tumor-up-regulated CARD-containing antagonist of caspase nine (TUCAN) and NEDD4
(neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein
ligase), which starts caspase-9 activation.?*”-2*8 UNC5B initiates p53-dependent cell death due
to the dephosphorylation of death associated protein kinase 1 (DAPK1) executed via protein
phosphatase 2 (PP2A). 239240 Another unc-5 netrin receptor (UNC5D) after cleavage done by
caspase-3 acts as gene expression regulator of pro-apoptotic proteins in the nucleus, whereas
Neurotrophic Tyrosine Kinase, Receptor, Type 3 (NTRK3) after being cleaved by caspase-3
relocates into the mitochondria for caspase-9 activation.?*'24? Although the exact molecular
mechanism is still to be elucidated TLR3 either is capable of apoptosis induction by activation

of caspase-8 involving TIR-domain-containing adapter-inducing interferon-g (TRIF).243

8.6.2 Necroptosis

The evolvement and life of multicellular organisms depend on the homeostasis of cell survival
and death.”™" Without a programmed and regulated pattern of cell death, embryonic life-forms
die during their development.?4+246 The importance of necroptosis for embryonic development
is highlighted by the fact that, mice deficient for necroptotic cell death pathways die at an early

embryonic stage.244-246

Necroptotic cell death is completely independent of caspase activation. Necroptotic cells
display morphological properties characterized by translucent cytoplasm, oncosis,
permeabilization of both lysosomal and plasma membrane, whereas the nucleus stays
intact.3®

Necroptosis requires the activation of the receptor-interacting protein kinase-1 (RIPK-1)
receptor- and interacting protein kinase-3 (RIPK3).131247-21 The implications of TNF-a
regarding the regulation of molecular pathways and cell death patterns has been investigated
since the 1980s, however only the breakthrough discovery of the RIP-kinases enabled the

exploration of the necroptosis and its consequences. '31.247-251

These two momentous findings along with the opportunity to inhibit necroptosis with

Necrostatin-1 opened up the possibility for scientists to investigate necroptosis as a formerly
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known blank area on the map.?2°%52 Programmed cell death is triggered among others by TNF-
a which binds to the Tumor necrosis factor -a receptor (TNFR) and induces a polyubiquitination
of RIPK1 via the NF-kB pathway.??°252 Deubiquitination of linear ubiquitin chains of RIPK1
disrupts the RIP-kinases feature to initiate pro-survival signalling.??%2%2 Tumor necrosis factor
receptor type 1-associated DEATH domain protein (TRADD) and the ligand Fas-Associated
protein with Death Domain (FADD) assemble to the pro-caspase-8, yet in deviation to the
normal formation of caspase-8 homodimers, FLICE-like inhibitory protein (FLIP) structurally
mimics caspase-8 and associates to the protein.'28245253-255 Thys a heterodimer lacking
protease activity is created, obviating activation of apoptosis. 2824525325 The |oss of function
of caspase-8 or FLIP leads to an intracellular complex composed by RIPK1 and RIPK3, ending
in the formation of the so called “necrosome”.'28:245253-25 Consequently, mixed lineage kinase
domain-like (MLKL) is activated to initiate necroptosis. 28245:253-2%5 R|PK3 phosphorylates the
MLKL, which can form oligomers and bind to the phosphatidylinositol phosphate species in the
cell membrane leading to the flip of the inner membrane to the outside e.g. of
phosphatidylserine, which is very important for cell death detection due to its binding capacity
to Annexin-V. 245254256257 Heat shock protein-90 (HSP-90) also plays a role in necroptosis as
a lack of it inhibited the translocation of activated MLKL to the cell membrane. 2°8 2°° MLKL can
also regulate Ca?" influx after its localization into the cell membrane and thus demonstrates
another mechanism of necroptosis induction. ?° Data suggest that MLKL activates a
disintegrin and metalloprotease (ADAM), which is a family consisting of various different
proteases in the cell membrane, prompting ectodomain shedding of cell adhesion molecules
disrupting the cell integrity or leading to cell migration, growth factors or cytokines, which
enhance inflammation as soluble fragments.?" MLKL can pave the way to necroptosis by

froming cation channels for Mg?* creating permeability and cell membrane depolarization.?6?

Beside the initiation of necroptosis by TNF many more activators are known, e.g. FAS, TLR3
and TLR4, pathogen recognition receptors (PRRs) and Z-DNA binding protein 1 (ZBP1).
249,263,264 The ligand for TLR3 is double-stranded RNA of viruses in the endosome, whereas
TLR4 can be activated by lipopolysaccharides (LPS) in the membrane of gram-negative
bacteria or Damage-associated molecular patterns (DAMPs) at the cell surface leading to the
RIP homotypic interaction motif (RHIM) and TRIF interaction resulting in RIPK3 activation.23
ZBP1 detects cytosolic DNA and RNA (also very essential for antiviral immune answer) and

acts via interferon type | synthesis induction and NF-kB. 265266

As inhibitory player of the necrosome, carboxyl terminus of Hsp70-interacting protein (CHIP)
was identified for ubiquitination of RIPK1 and RIPK3 causing lysosomal degradation and A20
for inhibition of the necrosome-complex building by ubiquitination of RIPK3.267-26° Protein

phosphatase Mg2+/Mn2+ dependent 1B (PPM1B) dephosphorylates RIPK3, whereas aurora
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kinase A (AURKA) prevent the RIPK1 and RIPK3 interaction by phosphorylation steps and
therefore both inhibit the necrosome assembly. 27%2"" The RIPK3 activation further depends on
the availability of co-stimulatory factors as CDC37 and heat shock protein 90 (HSP-90).272 One
of the most important factors of necropotosis induction is the caspase-8 deficiency or

inactivation. 273274

Necroptosis may have developed as a cellular opportunity for the defence against intracellular
infection. 128275276 However, various effects of necroptosis have been shown so far.
Necroptosis seems to play a role in atherosclerosis?’’, myocardial infarction?’8, traumatic brain

injury?”® and Salmonella enterica infection. 2°

Despite the increasing number of cellular and clinical research projects, the path of utter

understanding of necroptosis is still a long road to go.

8.7 From cell death to cell survival

Our working group around Prof. Ankersmit tried to further develop the conclusion of cell-based
regenerative therapies and tried to use the secretome of PBMCs?3' The results were promising
with significant reduction of infarct size in a rodent AMI model, after injection of the
PBMCsec.?'

To enhance the regenerative capability of PBMCs, they were driven into apoptosis.”’?%2 The
apoptosis was triggered by y-irradiation, as it is commonly used to prepare blood transfusion

for patients with immunodeficiency.?®!

As a next step only the secretome of the apoptotic PBMC after 24h of cultivation was used,
due to the literature and data gathered from the use of conditioned medium of stem cells in
myocardial ischemia.”"?®2 The secretome of the irradiated apoptotic PBMC hereinafter referred
to as "APOSEC" was able to restore cardiac function after AMI in a rat model, after intravenous
infusion.?? These effects were explained by an increased amount of pro-angiogenic cytokines,
for instance IL-8, vascular endothelial growth factor (VEGF) and growth related oncogene-a
(GRO-0).281:282 The inhibition of reperfusion-induced cardiomyocyte death or induction of
cytoprotection have been suggested as a potential mechanism of action.?®' Therefore, we have
identified several mechanisms that may at least partially elucidate the effects stated above.
APOSEC induces cytoprotection, as well as anti-apoptotic, pro-survival mechanisms, in
cardiomyocytes in vitro. Incubation of APOSEC augments the phosphorylation of AKT,
p42/p44, Erk1/2, p38, MAPK, HSP27, c-Jun, and cAMP response element binding protein
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(CREB) in human cardiomyocytes within 60 min, and the observed effects on Hsp27 and
CREB phosphorylation are dose-dependent.?®':282 |n addition, the expression of anti-apoptotic
proteins, such as Bcl-2 and BAG1, was induced. Furthermore, APOSEC prevented cell death
in cardiomyocytes in a starvation assay?®' and we showed that the inhibition of select factors
(VEGEF, IL-8, ENA-78, MMP9) alone or in combination did not attenuate the induction of CREB

and Bcl-2 in cardiomyocytes, indicating unknown biological mechanisms.?8?

The regenerative effect was not only shown in stressed cardiomyocytes, but also in a murine
wound healing model. Paracrine factors derived from PBMCs induce the activation of
cytoprotective proteins in keratinocytes (CREB, Erk1/2, c-Jun, Akt, HSP27), dermal fibroblasts
(Erk1/2, c-Jun, Akt, Hsp27), and dermal microvascular endothelial cells (CREB, c-Jun,
HSP27).°"

Furthermore, the PBMC secretome seemed to have vasodilatory effects. *® Hoetzeneker et al
was able to demonstrate that the co-incubation of platelets with APOSEC lead to an
enhancement of phosphorylated vasodilator-stimulated phosphoprotein (VASP) and as a
consequence inhibiting platelet aggregation.®® Moreover the treatment of human umbilical vein
endothelial cells (HUVEC) with APOSEC lead to an increased release of vasoactive
substances such as p-eNOS and iNOS.®° Not only this indirect regulation was observed, yet
also a direct vasodilation in myographical testing on coronary artery rings could be shown.®
Thus we can suggest a role of APOSEC in vasodilation, which may have an impact on early
wound healing. As previously discussed after the initial vaso-contractile period after wounding
with thrombocyte clotting to stop the wound from bleeding, vasodilation plays an essential role
in the inflammatory phase of wound healing leading to migration of macrophages and nutrient

transportation to the wounded site.”

In a spinal cord injury (SCI) study in rats, positive effects on the outcome after traumatic stress
were revealed.?®® Our working group also demonstrated an up-regulation of Erk1/2 in spinal
cord tissue from naive rats exposed to human APOSEC via intraperitoneal injection.?®
Astrocytes and Schwann cells co-incubated with APOSEC exhibit CREB, Erk1/2, c-Jun, Akt,
and HSP27 phosphorylation in vitro (the latter only in astrocytes). CREB phosphorylation has
also been shown in neurons.?®® |schaemia is a severe problem in SCI. We showed an increase
in pro-angiogenic chemokine (C-X-C motif) ligand 1 (CXCL1) and neuroprotective Brain-

Derived Neurotrophic Factor (BDNF) after administration of APOSEC to naive rats in vivo.283.28

The inflammatory response after SCI is mediated by monocytes and macrophages, which
resolve inflammation. In a previously published rat model of SCI, Haider et al. demonstrated
increased infiltration of CD68+ cells (by immunohistological analysis) to the site of the inflicted

injury in the PBMC secretome group.?®3 However, the number of iNOS-positive cells (reflecting
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microglia activation) was decreased.?® Haider et al. were also able to show that incubation of
CD14+ cells with the MNC secretome up-regulates markers associated with M2 polarization,

indicating a shift from pro- to anti-inflammatory immune activation.?%?

Beside the monocytes also the neutrophils, the most numerous subpopulation of leukocytes,
play a significant role for wound healing.'®?8° They appear as first responders to a wounded
area, to fight infections via phagocytosis and secretion of reactive oxygen species (ROS) and
additionally the production of neutrophil extracellular traps (NETs).'"® The NET formation,
which is important in the inflammatory phase of wound healing, holds the potential to massively
impair tissue regeneration if it is acting excessively.’ Klas et al. could show, that the
stimulation of neutrophils with the secretome of PBMCs reduced the ROS production and
diminished the activation of protein arginase deiminase 4 (PAD4), which leads to decreased
NET-formation.'® The exact regulation of NETosis may be an important element in improved

wound healing. 83286

A synergistic effect of the PBMC secretome could also be verified in further studies of Klas et
al.’ Klas et al could show, that neutrophil extracellular trap (NET)-formation was only
diminished after treatment with the supernatant of whole PBMC cultures.'® Stimulation of
neutrophils with lipid or protein subfractions of the PBMCs did not result in the same beneficiary

effect.00

Bacterial infections also lead to chronic non healing ulcers or prolong adequate healing.?®”
Another positive effect on wound healing of APOSEC may be the antimicrobial activity shown
by Kasiri et al.?®® He could demonstrate that the growth of Pseudomonas aeruginosa a
common gram-negative bacteria was reduced by the application of the PBMC-secretome.?%
Furthermore the growth of Escherichia coli and Staphylococcus aureus were significantly
inhibited by the application of APOSEC.288

The angiogenic properties of the PBMC secretome have been shown in an aortic ring assay
and 3D cultures of spinal cord tissue.?®® In addition, in mesenchymal fibroblasts incubated with
APOSEC, our working group demonstrated increased IL-8, MMP9, and mRNA levels of
proteins associated with angiogenesis.®' Moreover, angiogenesis is crucial for wound healing,
and the pro-angiogenic capacity of the secretome of PBMC (PBMCsec) has been shown in
vitro (increased proliferation of endothelial cells tested via tube formation assay) and in vivo

(increased number of CD31+ cells in a mouse model of wound healing).%’

This pro-angiogenic effect could be verified by Copic et al., as tube formation assays after

stimulation with plasma(from whole blood), that was treated with PBMCsec showed increased

endothelial activity.'® This increase in angiogenesis may be induced by the upregulation of

genes, such as SERPINB2, VEGFA or CXCL5, as shown in a single cell sequencing analysis
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after stimulation of monocytes by PBMCsec.'%* Furthermore upon stimulation of PBMCsec the
thrombin-mediated endothial leakage was ameliorated, leading to preserved endothelial
barrier function.'® A retained endothelial barrier function prevents excessive migration of

immune cells and thus exaggerated inflammation. %4

After promising in vitro results for wound healing, our working group sought to explore the
effect of PBMCsec in vivo. In the study of Mildner et al after application of the supernatant of
PBMC on punch biopsy wounds an increased wound closure could be detected from day 3
and on day seven, the tissue analyzed with histological stainings appeared to have matured
to a higher degree, as the control groups treated with medium and sodiumchloride alone.®In
an scratch assay the migratory capacity of fibroblasts and keratinocytes was ameliorated in

vitro after stimulation with the secretome.®’
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Fig. 6. Effects of PBMC secretome on wound healing in a murine model. Adapted from Mildner et al 5 The
time curve displays the wound closure within 3 days in given in percent after daily treatment with
PBMC supernatant (SECpsuc) physiologic sodium chloride-solution (NaCl) or medium alone.%”
The wound closure after seven days is shown on the left and below the neo-angiogenesis was
analyzed using histological sections of the wound area.%’

Wagner et al could reveal a beneficiary effect of the secretome of apoptotic PBMCs
(MNCaposec) in a murine diabetic wound model (LepRdb/db mice).6' After 25 days of
wounding the unclosed area was signicantly smaller in the mice treated with APOSEC

compared to the vehicle treated control group (showed in the figure below).®
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Fig. 7. Effects of the secretome of apoptotic PBMC (MNCaposec) in a murine wound healing model (drug
vehicle was used as control)®! A photograph of the wounded area treated with MNCaposec or
vehicle. B Wound circumference depicted in fold change. C Immunohistochemical analysis of the
wounded area (representative sections of skin treated with MNCaposec or vehicle.®"

In immunohistochemical analysis (Hematoxylin and eosin staining) the treatment of wounds
with MNCaposec lead to decreased wound area and showed more re-epithelialization

compared to the vehicle treated controls.®’

Furthermore the positive effects of irradiated PBMC on re-epithelialization could be verified in
the study of Hacker et al.?® After a standardized burn injury the skin of pigs treated with the
irradiated PBMC secretome depicted an increased epidermal thickness as well as a higher
number of CD31+ cells, suggesting a higher angiogenic activity in the damaged tissue.®
Incubating T cells with the PBMC secretome resulted in the induction of apoptosis, which was
blocked by pre-incubation with caspase 3 and caspase 8 inhibitors, indicating the involvement
of external pathways.*

Moreover, the quality and strength of the newly formed skin was analyzed by quantification of
Rete ridges, which act as stabilizers between the epidermis and dermis, leading to better
compensation of shear stress.? The length of rete ridges was found higher in the area treated

with the secretome of PBMC compared to the medium or isotonic sodium chloride solution
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(NaCl) treated area. & In the histological section of the border zone keratin-10 was stained as
marker for epidermal differentiation.®® As shown in the figure 7 below the increased proliferation

of the epidermis in the wounds treated with PBMC secretome could be detected.®

Fig. 8. Keratin 10 staining in porcine wound healing adapted from Hacker et al # Increased epidermal
proliferation was shown with keratin 10 stainings (red) in a wound treated with a) NaCl b) medium
c) the secretome of PBMC or d) the secretome of irradiated PBMC. The asterisk marks the
wounded area.

After addition of PBMCsec on rodent skin flap wounds lower necrosis-rates were observed
leading to improved wound healing.?®*The wound and flap area were excised after day 7 of
PBMCsec application and the number of vessels were evaluated in immunohistochemical
sections.?®® The results were astonishing, as the number of vessels was higher in the
PBMCsec cohort, whereas the control group undergoing sham surgery clearly showed more
von Willebrand factor-positive vessels.?%

The PBMC secretome seems to have multiple ways to implement its beneficial effects on
wound healing. Potential modes of action and the studies referring to the respective range of
subjects are summed up in the figure below.
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Modes of action

Angiogenesis Reference(s)

Mildner M et al., PLoS One 2013

Haider et al., Exp Neurol 2015

Hacker S et al., Sci Rep 2016

Wagner T et al., Sci Rep 2018

Simader E et al., Cell Death Dis 2019
Laggner M et al., Stem Cell Res Ther 2020

Re-epithelialization & cytoprotection

> S B 8 Mildner M et al., PLoS One 2013
B 58 o e i, ‘

ﬂ"ﬂnﬁﬂ‘, Beer L et al., Sci Rep 2015
Epe ) Hacker S et al., Sci Rep 2016

Copic D et al., Pharmaceutics 2022

Immunomodulatory effects
Hoetzenecker K et al., Eur Heart J 2015
% Beer L et al., Sci Rep 2015
) © Hacker S et al., Sci Rep 2016
?‘Z’Q Laggner M et al., EBioMedicine 2020
Laggner M et al., EBioMedicine 2022

Klas K et al., Antioxidants 2022
Mildner C et al., Biology 2022

Anti-microbial activity

s Kasiri MM et al., Eur J Clin Invest 2016

Fig. 9. Possible modes of action of PBMC secretome, regarding pro-angiogenic effects, cytoprotection, and

regulation of the immune system.®® Adapted from Hacker et al. *°

Beer et al. analyzed the secretome of irradiated and untreated PBMCs regarding their
composition of lipids, proteins and microvesicles.®®* He could show, that the supernatants of
PBMCs contained higher levels of ftriglycerides, cholesterol and phospholipids after
irradiation.®® Moreover the amount of oxidized lipids significantly increased in the irradiated
group.®® The number of microvesicles and exosomes was increased in the supernatant of
irradiated of PBMCs as well.%® To investigate the role of proteins, lipids, exosomes and

microparticles they were applied on fibroblasts scratch assays.®® The fibroblasts treated with
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exosomes of irradiated PBMCs seemed to display the fastest scratch closure by fibroblast

proliferation.®?

Wagner et al further developed this concept and tried to test the possible angiogenic potential,
of the exosomes and lipids and proteins and compared it to the secretome of co-cultured,
irradiated PBMC subtypes in an ex vivo aortic ring assay.?®® The results were other than
expected, as the formation of new vessels was most prominent after stimulation with the whole
secretome, the exosomes, lipids or proteins alone came not even close to this effect.?8¢
Additionally an AP-1 promoter and HSP-27 phosphorylation assay was done with the
subfractions and as a control all isolated exosomes, lipids and proteins were pooled again and
used as stimulation.?® Astonishingly the pooled subfractions could not sum up to the effect the
supernatant of whole PBMCs achieved in the activation of AP-1 and HSP-272%_ These results

may indicate a possible synergistic effect.?%® But the main actor of this effect is still not found.

Our working group tried to break the effect of APOSEC down to one effective composite.
Wagner and Beer et al. analyzed the impact of proteins, lipids, exosomes and microvesicles,

yet without finding a sole actor of the pro-angiogenic effect.5%2¢6

To further investigate the source of the angiogenic capacity of the secretome of irradiated (and
therefore apoptotic and necroptotic) PBMCs is the aim of this thesis. As elaborated in the
following two papers we sought to gain deeper insight in the mechanisms of action of this

highly auspicious treatment possibility for enhanced wound healing.
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8.8 Aims of this thesis

As previously shown by our working group the secretome of PBMC has the potential to
enhance wound healing in a murine and porcine model.5”# Thus, the first aim of this thesis
was to unravel the cell type of PBMCs, which is responsible for this pro-angiogenic, wound
healing capacity. Moreover the cytokine and chemokine composition of T-cells, B-cells, NK-

cells and monocytes in that context, were never investigated before.

The changes in the gene signature were further determined via micro-array analysis as well

as on protein level via protein assays of the supernatant.

This thesis aims to discover possible differences on the PBMC secretome, according to the

initiated cell death.

We sought to analyse the changes in gene and protein expression, resulting from apoptosis

and necroptosis in PBMCs and the changes in its paracrine effects.

The last and most important aim of the study is to test, if the application of autologous
APOSEC, that was produced under good manufacturing practice (GMP)-guidelines on human

skin is safe and does not lead to adverse events. This was observed in a clinical phase | study.
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9 CHAPTER TWO: Results
9.1 Prologue

In previous works of our working group known PBMCs showed only low concentration of pro-
apoptotic factors, such as TNF-a, soluble CD40 ligand (sCD40L), soluble FAS ligand (sFASL),
and sFAS, after irradiation.®® Blocking them did not result in preventing apoptosis in highly
purified CD4+ T-cells.®® These findings lead to the idea, that not only apoptosis, but another

cell death could be triggered in PBMC after irradiation.

In the study of Kasiri et al. we tested different types of cell death induced by irradiation.?®® Due
to the help and experience of the guest scientist Pietkiewicz and the new technological
possibilities of the Image Stream, we were able to detect necroptosis as a consequence of

ionizing irradiation.?*!

We further wanted to observe what happens to the already known angiogenic potential of
PBMC secretome, if apoptosis or necroptosis is inhibited. Would this APOSEC or NECROSEC

will have similar angiogenic potential?
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9.2 Paper1

Simader et al. Ceif Death and Disease {2019)10:729
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ARTICLE Open Access

Tissue-regenerative potential of the secretome of
y-irradiated peripheral blood mononuclear cells is
mediated via TNFRSF1B-induced necroptosis

Elisabeth Simader'*, Ludan Beer (3, Maria Laggner**®, Vera Vorstandlechner™®, Alfred Gugerell(3*>°, Michael Erty’,
Palina Kalinina® Dragan Copic2’3’6, Doris Moser®, Andreas Spittlerwo, Erwin Tschachler®, Hendrik Jan Ankersmit™>® and
Michael Mildrer(®

Abstract
Peripheral blood mononuclear cells (PBMCs) have been shown to produce and release a plethora of pro-angiogenetic
factors in response to y-irradiation, partially accounting for their tissue-regenerative capacity. Here, we investigated
whether a certain cell subtype of PBMCs is responsible for this effect, and whether the type of cell death affects the
pro-angiogenic potential of bioactive molecules released by y-irradiated PBMCs. PBMCs and PBMC subpopulations,
including CD4™ and CD8™ T cells, B cells, monocytes, and natural killer cells, were isolated and subjected to high-dose
y-irradiation. Transcriptome analysis revealed subpopulation-specific responses to yHirradiation with distinct activation
of pro-angiogenic pathways, cytokine production, and death receptor signalling. Analysis of the proteins released
showed that interactions of the subsets are important for the generation of a pro-angiogenic secretome. This result
was confirmed at the functional level by the finding that the secretome of y-irradiated PBMCs displayed higher pro-
angiogenic activity in an aortic ring assay. Scanning electron microscopy and image stream analysis of y-irradiated
PBMCs revealed distinct morphological changes, indicative for apoptatic and necroptotic cell death. While inhibition
of apoptosis had no effect on the pro-angiogenic activity of the secretome, inhibiting necroptosis in stressed PBMCs
abolished blood vessel sprouting. Mechanistically, we identified tumor necrosis factor (TNF) receptor superfamily
member 1B as the main driver of necroptosis in response to y-irradiation in PBMCs, which was most likely mediated via
membrane-bound TNF-a. In conclusion, our study demonstrates that the pro-angiogenic activity of the secretome of
vy-irradiated PBMCs requires interplay of different PBMC subpopulations. Furthermore, we show that TNF-dependent
necroptosis is an indispensable molecular process for conferring tissue-regenerative activity and for the pro-
angiogenic potential of the PBMC secretome. These findings contribute to a better understanding of secretome-based
L therapies in regenerative medicine.

Introduction
Regenerative medicine, aiming at restoring damaged

tissues and organs, has become an emerging branch of

translational research in the last century worldwide'.
Corres‘pondenlce: Hendr\k Anker;mlt (hendr\k.a‘n\fersm\t@medumwwen.ac.at) However, despite major advances in drug therapies, sur-
or Michael Mildrer {michael.mildner@meduniwien.ac.at) . R B .
'Department of Internal Medicine Ill, Division of Rheumatology, Medical glcal interventions, and organ transplantatlon, regenera-
University of Vienna, Vienna, Austria tion of injured organs still remains a major obstacle®. A
D\vws‘\on of Thora‘cwc Surggn/, Medwga\ Unhversity of Vienna, \ﬁe‘rma, Austria promising new therapeutic avenue may be offered bY stem
Full list of author information is available at the end of the article. A N .
These authors contributed equally: Hendrik Jan Ankersmit and Michael Mildner cell-based therapies, on which numerous pre-clinical
Edited by T. Kaufmann

@ The Authors) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 Intemational License, which permits use, sharing, adaptation, distibution and repraduction
B nany medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if
changes were made. The images o other third party material in this atticle are included inthe article’s Creative Commons license, unless indicated otherwise in a credit line to the material.
material is not included in the article's Creative Commons license and your intended use is not penmitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit hrtpy/creative commons.orgylicenses/by/4.0/.

SPRINGER NATURE
CDDpress

Official journal of the Cell Death Differentiation Association

37



Simader et al. Cell Death and Disease (2019)10:729

studies, investigating their efficacy and mechanisms have
been conducted®™®. Unfortunately, translation of experi-
mental in vitro studies or animal models to the patient has
been shown to be extremely difficult if not impossible”. In
addition, an increasing number of studies suggests that
not stem cells themselves, but rather the factors released
from stem cells are important and sufficient to promote
tissue regenerations‘g.

In 2005, Thum et al.'® speculated that stem cells
undergo apoptosis while being processed for clinical
applications and thus induce immunomedulatory and
tissue-regenerative effects. In addition, the authors
doubted the uniqueness of stem cells and suggested that
any other nucleated apoptotic cell type would exhibit
tissue-regenerative features'’. The first study providing
evidence for tissue repair by stressed peripheral blood
mononuclear cells (PBMCs) was performed by
Ankersmit et al"". Enhanced regeneration was observed
in acute myecardial infarction (AMI) by applying y-
irradiated PBMC suspensions intravenously. In sub-
sequent years, we were able to show that the application
of the PBMC secretome alone causes tissue repair in
AMI" stroke'®, spinal cord'®, and skin wounds'”*,
in small and clinically relevant large animals. Although a
previous study from our group suggested that y-irra-
diatien is able to induce apoptosis and necroptosis®®, a
contribution of necroptosis te tissue regeneration by the
release of paracrine factors has not been investigated
so far.

In contrast to necrosis, an uncontrolled form of cell
death, apoptosis had already been described as a well-
controlled form of programmed cell death decades agom.
Later, also a programmed form of necrosis, termed
necroptosis®®>*®. The two forms of programmed cell death
differ morpholegically as well as mechanistically from one
another. Morphologically, apoptesis is characterized by
karyorrhexis, pyknosis, and blebbing of the plasma
membrane®”. By contrast, necroptotic cells exhibit trans-
lucent cytoplasms, oncosis, and permeabilization of the
lysosomal and plasma membranes, while nuclei remain
intact™?**. Instead of caspase activation, necroptosis
involves receptor-interacting protein kinase-1 (RIPK1),
RIPK3, and mixed lineage kinase domain-like (MLKL)
activation®. Tumor necrosis factor-a (TNF-a) is one of
the best characterized inducers of apoptosis, activating the
caspase-8 signalling cascade. However, due to partially
overlapping upstream signalling elements, TNF can also
activate the necroptotic pathway, which is favored by
impaired caspase activity”. Whereas the role of necrop-
tosis in several pathological conditions, including ather-
osclerosis??, myocardial infarction?®, traumatic brain
injury””, and infections®® have been investigated so far, the
effects of the necroptotic cells on surrounding tissues
remains poorly understood.
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Although several biological effects of paracrine factors
released from stressed PBMCs have already been inves-
tigated, the mechanisms by which these factors exert their
pro-angiogenic and tissue-regenerative activities have not
been fully elucidated so far'”. In the current study, we
therefore addressed two major questions: (1) is the pro-
angiogenic potential of the secretome of y-irradiated
PBMC cell type-dependent and (2) does the type of pro-
grammed cell death contribute to the pro-angiogenic
property of y-irradiated PBMC secretome (Fig. 1).

Materials and methods
Ethics vote

Heparinized blood samples for PBMC isclation were
obtained from healthy volunteers at the Department for
Blood Transfusion Medicine of the Medical University of
Vienna (ethics committee vote: EK-Nr 1539/2017). All
donors provided informed written consent. For ex vivo
angiogenesis experiments, mouse experiments were per-
formed according to recent Austrian guidelines for the
use and care of laboratory animals and approved by the
Animal Research Committee of the Medical University of
Vienna (Protocol No. 190097/2015/9).

Isolation of PBMCs and PBMC subsets and production of
the secretomes

Cell secretomes were produced as described pre-
viously27. Briefly, PBMCs were isolated using density
gradient centrifugation via Ficoll-Paque PLUS (GE
Healthcare Bio-Sciences AB, Sweden). Heparinized blood
was diluted with phosphate-buffered saline (PBS, Gibco
by Life Technologies, Carlsbad, CA, USA) and layered
carefully over Ficoll-Paque PLUS. After centrifugation
(800 x g, 15 min, room temperature, with slow accelera-
tion and deceleration), buffy coat containing PBMCs was
enriched at the interface between Ficoll-Paque PLUS and
plasma. For purification of monocytes (CD14), natural
killer cells (CD56), CD4Y T cells (CD4), CD8T T cells
(CD8), and B cells (CD19), magnetic microbeads (Milte-
nyi, Bergisch Gladbach, Germany) against the respective
cell surface epitope were used to enrich cells by Auto-
Macs Pro technology (Miltenyi) according to the manu-
facturer’s protocol. Purity of isolated cells was confirmed
by flow cytometry and ranged from 93 to 99% (Supple-
mentary Fig. 1). Whole PBMCs and purified cell subsets
were resuspended in CellGro serum-free medium (Cell-
Genix, Freiburg, Germany), irradiated, and cultivated for
24h at a concentration of 25 x 10° cells/ml in the same
medium. y-Irradiation of isolated PBMCs and purified
PBMC subsets with Cesium-137 (60 Gy) was conducted
as described previously?”. To evaluate dose-dependent
effects of y-irradiation, PBMCs were irradiated with 0.9,
1.9,3.75,7.5, 15, 30, and 60 Gy. For inhibition of apoptosis
and necroptosis, 20 uM zVAD and 100 uM necrostatin-1
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(both Sellekchem, Munich, Germany) were added
immediately after irradiation. After 24 h of incubation,
supernatants were collected by centrifugation (400x g,
9min) and stored at —20°C. Cells were used for flow
cytometric analysis and lysed for protein and messenger
RNA (mRNA) analyses as described below.

Imaging flow cytometry analysis

Imaging flow cytometry analysis (Amnis ImageStreamX
Mk II, Luminex Corp., Seattle, WA) was performed
according to a published protocol using Annexin-V-
FLUOQOS Staining Kit (Roche, Basel, Switzerland) according
to the manufacturer’s instruction™.

Scanning electron microscopy

For scanning electron microscopy (SEM), PBMCs were
either irradiated with 60 Gy or left untreated, washed twice
with PBS, fixed in Karnovsky's fixative (2% paraformalde-
hyde, 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH
7.4); Morphisto, Frankfurt am Main, Germany), dehydrated,
and dried with hexamethyldisilazane (HMDS, Sigma-Aldrich,
Taufkirchen, Germany). Samples were fixed to specimen
mounts with double-faced adhesive carbon tape, gold sput-
tered (Sputter Coater, ACE200, Leica Microsystems, Wetzlar,
Germany), and examined by a SEM (JSM 6310, Jeol Ltd®,
Japan) with an acceleration voltage set to 15kV.
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Western blot analysis

Cells for Western blot analysis were lysed in Limmli
Buffer (Bio-Rad, Hercules, CA, USA) with protease inhi-
bitors (Thermo Fisher, Waltham, MA, USA) and sodium
orthovanadate (Sigma Aldrich, St. Louis, MO, USA)
according to the manufacturer’s protocol. Thirty micro-
grams of total protein were separated on ExcelGels (GE
Healthcare) and transferred onto nitrocellulose mem-
branes (Bio-Rad). After blocking, membranes were incu-
bated with primary antibodies [cleaved caspase-3 antibody
(0.5 pg/ml, #MAB835; R&D Systems, Minneapolis, MN,
USA), phospho-RIPKs 1 (1:100, #65746; Cell Signalling
Technology, Cambridge, UK), phospho-RIPK3 (1:200,
#ab209384; Abcam, Cambridge, UK), phospho-MLKL
(1:500, #91689; Cell Signalling Technology, Cambridge,
UK), or glyceraldehyde 3-phosphate dehydrogenase
(1:2000, #2118; Cell Signalling Technology, TNF (1 pg/ml,
R&D Systems)] overnight at 4 °C. After further incubation
with horseradish-conjugated goat-anti-rabbit antibody
(1:10,000, #170-6515; Bio-Rad, Hercules, CA, USA), sec-
ondary antibodies were visualized with Supersignal West
Dura (Thermo Fisher, Waltham, MA, USA) and signals
were detected using ChemiDoc System (Bio-Rad). For
blocking of the TNF antibody, 1 pg TNF antibody was
pre-incubated with 10 pg recombinant TNF (R&D Sys-
tems) for 4 h at 4°C:
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TNF receptor blockade

PBMCs were treated with zZVAD and neutralizing anti-
bodies against TNF receptor superfamily member 1A
(TNERSF1A), TNFRSF1B (both 1 ug/ml, R&D Systems),
or both were added. Cell lysates were obtained 24 h after
irradiation.

Total RNA isolation

Total RNA was isolated from PBMCs and PBMC sub-
sets immediately after cell purification as well as 24 h after
irradiation with 60 Gy using Trizol® Reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer’s instruc-
tions. Total RNA was quantified using NancDrop-1000
spectrophotometer (Peglab, Erlangen, Germany) and
RNA quality was assessed by Agilent 2100 Bicanalyzer
(Agilent Technologies, Santa Clara, CA, USA). All RNA
samples used in further procedures displayed an RNA
integrity score between 6.2 and 10.

Microarray analysis

Microarray analysis was carried out at the Genomics
Core Facility at the Medical University of Vienna (Vienna,
Austria) using Affymetrix Human Transcriptome Array
2.0 (Affymetrix part of Thermo Fisher Scientific Inc.)
according to MIAME guidelines®". Data were analyzed
using GeneSpring Version 15.0 software (Agilent). First,
raw data were log 2 transformed, normalized by quintile
normalization, and baseline transformed. Thereafter, a
filtering step was performed in order to reduce the
number of multiple hypotheses and to obtain only genes
for which at least 75% of the values in one sample (0 h vs.
irradiated) were above the 60th percentile of the average
expression value®. Moderated paired ¢ test was used to
identify differentially expressed mRNA with a fold change
(FC) £ —2 and 22, respectively. P values were corrected
for multiplicity by applying Benjamini—-Hochberg adjust-
ment with a false discovery rate (FDR) <5%. mRNA
clustering was performed with GeneSpring software using
Euclidean distance metric and complete average-linkage
clustering. Microarray data were published on NCBI Gene
expression omnibus at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE127982 (GEO Accession number
GSE127982). Full access is granted using the password:
qnuxcigibxmdfcf.

Gene ontology and pathway analysis

In order to evaluate biological functions of differentially
expressed genes in response to irradiation, we categorized
them using the WEB-based Gene Stet Analysis Toolkit
(WebGestalt)™. Gene ontology (GO)-term enrichment
analysis was performed to identify biological processes
that were enriched (geneontology.org). In addition,
pathway analysis was performed using the Kyoto
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Encyclopedia of Genes and Genomes (KEGG) annotation
list™. Benjamini—Hochberg method for multiple testing
with a significance level of p<0.05 and FDR < 5% was
applied for both analyses. Activated canonical pathways
were identified using Ingenuity Pathway Analysis (Qiagen,
Hilden, Germany) with mRNAs displaying an average FC
>3 between 60-Gy-irradiated and freshly isclated
samples®™®,

Proteome profiler

Secretomes cbtained from PBMCs and PBMC subsets
were analyzed using the commercially available Proteome
Profiler XL Cytckine Array and Human Apoptosis Array
(R&D Systems} according to the manufacturer’s instruc-
tions. Arrays were analyzed with the ChemiDoc system as
described above.

Aortic ring assays

Male C57BL/6 mice were purchased from The Jackson
Laboratory (Distributor Charles River, Sulzfeld, Germany)
and housed at the Center for Biomedical Research of the
Medical University of Vienna (Vienna, Austria). Mice
were sacrificed via cervical dislocation and aortas were
excised and sliced in 1-mm-thick rings (Supplementary
Fig. 2). The aortic ring assay was performed according to a
published protocol with minor alterations™®. Aortic rings
were sandwiched in a fibrin matrix composed of fibrino-
gen (2mg/ml, Merck Millipore, Burlington, MA, USA),
aprotinin (43.3 ug/ml, Sigma-Aldrich, St. Louis, MO,
USA), and thrombin (0.6 U/ml, Sigma-Aldrich) as
described previousy®”. Sandwiched aortas were equili-
brated with M199 medium, supplemented with 100 pig/ml
streptomycin, 4 mM r-glutamine, 100 U penicillin (all
from Gibeco), 250 ng/ml amphotericin B (Fisher Bior-
eagents, Fisher Scientific, Waltham, MA, USA), and 10%
fetal bovine serum (PAA Laboratories, Pasching, Austria),
for 45 min. After equilibration, the medium was removed
and supernatants of PBMCs and PBMC subfractions were
diluted in M199 medium corresponding to a final con-
centration of 4 x 10° cells/ml. Aortas were cultured for
3 days. For some sprouting assays, PBMC-derived secre-
tomes generated with the additien of 20 uM zVAD and
100 uM necrostatin-1 directly after irradiation were
investigated. Secretomes of PBMCs with zVAD and
necrostatin-1 added immediately before starting the
sprouting assay were included as controls. Ultimately,
calcein dye (Thermo Fisher, Waltham, MA, USA) was
added to label viable cells. Sprouts were photographed by
Olympus IX83 scanning micrescope (Olympus, Tokyo,
Japan) and visualized with cellSens Imaging Software
(Olympus, Tokye, Japan). Sprouting areas were calculated
using the Image] software version 1.48v (Wayne Rasband,
National Institutes of Health, Bethesda, MD, USA).
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Tube formation assays

Primary human umbilical vein endothelial cells
(HUVECs) were cultivated in endothelial cell growth
medium (EGM-2, Lonza, Basel, Switzerland). Before
starting the tube formation experiment, cells were sub-
sequently starved with basal medium (EBM-2, Lonza,
without growth factors) supplemented with 2% FBS
(Gibco) for 12h and without serum for 3h. p-Slide
angiogenesis tissue culture slides (Ibidi USA Inc., Fitch-
burg, WI, USA) were filled with growth factor reduced
Matrigel matrix (Corning, Corning, NY, USA), according
to manufacturer’s protocol. A total of 1 x 10* cells/well
were seeded and treated with PBMC-derived secretome
corresponding to a final concentration of 4 x 10° cells/ml
or medium alone. PBMC secretomes generated with the
addition of 20uM zVAD and 100 mM necrostatin-1
directly after irradiation were also investigated. Secre-
tomes of PBMCs with zVAD and necrostatin-1 added
immediately before starting the tube formation assay were
included as controls. After 3h eof stimulation, micre-
photographs were taken and the number of nodes, junc-
tions, and branches were analyzed via Angiegenesis
Analyzer Image] plugin using default settings (Wayne
Rasband, National Institutes of Health, USA).

Reporter gene assays and potency assays

Reporter gene assays for activator protein-1 (AP-1),
nuclear factor ‘kappa-light-chain-enhancer’ of activated B
cells (NF-xB), and heat-shock protein 27 (HSP-27)
developed at Synlab Pharma Institute AG (Bern, Swit-
zerland) were used to compare the potential of the dif-
ferent secretomes to activate these pathways. Human
neurcblastoma SH-SY5Y cells were cultured in Ham’s
F12/MEM (50:50) Glutamax (Gibco) supplemented with
1 pg/ml puromycin, 2 mM L-glutamine, and non-essential
amino acid solution (all from Sigma-Aldrich, St. Louis,
MQ, USA), 15% fetal bovine serum and SH-SY5Y cells
were stably transfected with a firefly luciferase tran-
scriptionally regulated by AP-1 promoter. Cells were
seeded in 96-well plates at a concentration of 20,000 cells
per well and stimulated with secretomes of y-irradiated
monecyte supernatant and PBMCs, both pooled from
four donors. To evaluate reporter activity, SteadyGlo
(Promega, Fitchburg, W1, USA) was added and lumines-
cence was measured via luminescence reader (EnVision,
Perkin-Elmer or Centro LB96), Berthold). To quantify
phosphorylation of HSP-27 at Ser82, adenocarcinomic
human alveolar basal epithelial cells (A549) were treated
with supernatants for 30 min, fixed, and permeabilized.
After sequential addition of antibodies directed against
the phosphorylated form of HSP-27 and peroxidase-
conjugated antibody, chemiluminescent signals were
measured with the luminescence reader (EnVision,
Perkin-Elmer or Centro LB960, Berthold) and relative
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potency was calculated with the PLA software (Stegmann
Systems GmbH, Rodgau, Germany).

Enzyme-linked immunosorbent assay

TNF-a (R&D Systems) and lymphotoxin A (LTA; R&D
Systems) were quantified by enzyme-linked immunosor-
bent assay accerding to the manufacturer’s instructions.

Graphical overview

The methodological approach was designed using the
InDesign CS software (version 7.0, Adebe Systems Inc.,
San Jose, CA, USA) and is shown in Fig. 1.

Statistical analysis

Data were analyzed using GraphPad Prism 6 software
(GraphPad Software Inc, La Jolla, CA, USA) and IBM
SPSS Statistics version 23 (SPSS Inc., Chicago, IL, USA).
Two-tailed Student’s ¢ test was used to compare para-
metric variables and stated as arithmetic mean + standard
deviation (SD). One-way analysis of variance with Bon-
ferroni post hoc test or Kruskal-Wallis with Dunn’s post
hoc test was used according te data distribution. Aber-
rations were excluded according to the Gibbs outlier test.
P values below 0.05 were considered statistically sig-
nificant and are marked with asterisks.

Results
y-Irradiation differentially affects transcriptional profiles of
PBMCs and purified cell subsets

To assess the impact of y-irradiation on transcriptional
networks of PBMCs and PBMC subsets, we conducted
mRNA microarray analysis four different healthy volun-
teers with and without y-irradiaticn. In total, 756 anno-
tated genes were differentially expressed in PBMCs and
PBMC subsets (Supplementary Table 1). Global gene
expression analysis showed significant differences
between stressed PBMCs and stressed purified cell types
(Fig. 2a, b). Principal component analysis of global gene
expression patterns showed a clear distinction between
the different cell types except for natural killer (NK) and
CD4™ T cells, which clustered together, suggesting high
transcriptional similarity (Fig. 2b). Monecytes, B cells, and
PBMCs displayed markedly distinct global gene expres-
sion patterns. Canonical pathway analysis of genes upre-
gulated by y-irradiation in PBMCs suggested activation of
death receptors, upregulation of TNF receptor 2
(TNFRSF1B) signalling, and induction of apoptosis.
Moreover, we identified activation of cytokine and cell
signalling pathways, including NF-kB and the stress-
activated protein kinase c-Jun-N-terminal kinase, both of
which are linked to tissue-regenerative and angiogenic
processes (Fig. 2¢)* .

To gain more detailed biclogical information on the
pathways identified, we investigated expression profiles of
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key signalling molecules of these pathways in the different
cell subsets. Selected genes involved in the processes of
cytokine production (Fig. 3a and Supplementary Table 2),
angiogenesis (Fig. 3b and Supplementary Table 3), and
wound healing (Fig. 3¢ and Supplementary Table 4) dis-
played notable differences in their expression pattern in
PBMCs compared to PBMC subsets. GO-term and
KEGG-pathway analyses of genes induced by y-irradiation
(Fig. 3d—i) reflected the differences observed on tran-
scriptional level also in a functional context. All selected
biological functions, including cytokine production (Fig.
3d), response to hypoxia (Fig. 3e), and cell cycle (Fig. 3f),
as well as the tumor growth factor-f (TGF-B) pathway
(Fig. 3g), mitogen-activated protein kinase (MAPK)
pathway (Fig. 3h), and p53 pathway (Fig. 3i) varied sig-
nificantly between the different cell groups. While genes
encoding cytokines were strongly enriched in PBMCs and
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NK cells (Fig. 3d), genes constituting the TGF-p signalling
pathway were found mainly activated in PBMCs, CD14
monocytes, and CD8' T cells (Fig. 3g). Genes associated
with stress response (response to hypoxia) were exclu-
sively enriched in irradiated PBMCs (Fig. 3e), while the
MAPK pathway was most upregulated in monocytes (Fig.
3h). Cell cycle genes were enriched after irradiation in
PBMCs as well as in B cells and CD8' T cells (Fig. 3),
whereas genes involved in the p53 signalling were sig-
nificantly enriched in all samples evaluated, showing
strongest activation in PBMCs (Fig. 3i). In conclusion,
results presented here indicate that various signalling
pathways and biological processes are differentially regu-
lated after y-irradiation in the respective cellular subsets
constituting PBMCs. Moreover, cell populations are in
reciprocal relationships which, although mutually, differ-
entially influence cellular signalling events in PBMCs.
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y-Irradiated PBMC subpopulations synergistically induce
blood vessel sprouting

As we have previously described a strong tissue-
regenerative and pro-angiogenic activity of the secre-
tome derived from y-irradiated PBMCs**%, and since our
bioinformatics analysis revealed differential transcrip-
tional signatures, we now asked whether a specific cell
subtype of PBMCs would account for the observed effects.
We therefore performed aortic ring assays with super-
natants from y-irradiated PBMCs, NK cells, monocytes,
CD4' T cells, CD8' T cells, and B cells. As shown in Fig.
4a, b, strongest pro-angiogenic activity was observed in
aortic rings cultured with the secretome of whole PBMCs.
Intriguingly, monocytes displayed vessel sprouting-
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inducing capacity, which was higher compared to med-
ium, yet compromised compared to that of the PBMC-
derived secretome. Stimulation of aortic rings with
secretomes derived from NK cells, CD4' and CDS§'
T cells, and B cells showed no increased pro-angiogenic
effects compared to centrol medium (not shown) in our
assay system (Fig. 4a, b). We furthermore sought to profile
the specific protein signatures obtained from PBMCs and
subsets. Analysis of cytokines revealed that certain cyto-
kines, including matrix metallopeptidase-9, interleukin-
18Bpa (IL-18Bpa), osteopontin, epithelial derived
neutrophil attractant-78, IL-8, RANTES (regulated on
activation, normal T cell expressed and secreted), angio-
genin, and IL-lra were exclusively detected in the
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Fig. 4 Blood vessel sprouting is synergistically induced by y-irradiated PBMC subpopulations. a Representative images of calcein-labelled
mouse aortic rings on day three of cultivation are shown. Scale bar, 250 um. b Box plots of averaged outgrowth areas are shown. Whiskers indicate
minimal and maximal values. Quantitative analysis showed a significant induction of sprouting blood vessels when adding the supernatant of PBMCs
as well as the supernatant of purified monocytes. *P values <005 compared to CellGro. € Analysis of cytokines present in the different secretomes
revealed that certain cytokines, including MMP-9, IL-18Bpa, ostecpontin, ENA7S, IL-8, RANTES, angiogenin, and IL-1ra, were exclusively detected in the
supernatant of y-irradiated PBMC. d—f Tissue-regenerative capacity of secretomes of y-iradiated PBMCs and monocytes was further assessed using
standardized reporter gene assays. NF-kB promoter activity and HSP-27 phosphorylation were strongly induced by PBMC supernatant, whereas AP-1
promotor was induced by PBMC and monocyte secretome. *P values <0.05 compared to CellGro. n=4

supernatant of y-irradiated PBMC (Fig. 4c, Supplemen-
tary Fig. 4). Since pro-angiogenic activity was unique to
secretomes of PBMC and monocytes, we next compared
the capability of these secretomes to activate signalling
pathways known to be involved in tissue-regenerative and
pro-angiogenic processes. Interestingly, NF-kB promoter
activity (Fig. 4d) and HSP-27 phoesphorylation (Fig. 4e)
were strongly induced by PBMC-derived secretome, while
being only moderately activated by the secretome
obtained from irradiated monocytes. In contrast, both
secretomes comparably activated the AP-1 promotor (Fig.
4f). Together, our data suggest that secretomes of PBMC
subsets exhibit differential pro-angiogenic capacities and
that a synergistic action of y-irradiated PBMC sub-
populations is necessary for efficient release of pro-
angiogenic mediators.

High-dose y-irradiation induces apoptosis and necroptosis
in PBMCs

Since our bicinformatics analysis suggested an activa-
tion of death receptors and an involvement of TNF
receptor signalling, we were interested which type of cell
death is induced in PBMCs and PBMC subsets after y-
irradiation. We therefore assessed cellular morphology,
indicative of the manner by which cells die, by SEM.
Intriguingly, we found comparable number of cells
showing morphological signs of either apoptosis or
necroptosis in irradiated PBMCs (Fig. 5a). Interestingly,
the levels of cells displaying either apoptotic or necrop-
totic features varied significantly between different
populations (Fig. 5b). As already observed by electron
micrescopy, quantification of apoptotic and necroptotic
cells in y-irradiated PBMCs confirmed an almost equal
abundance (22% apoptotic vs. 28% necroptotic) of both
forms of controlled cell death. In contrast, most of NK
cells were necroptotic (3% apoptotic vs. 94% necreptotic).
Although around half of CD4T and CD8" T cells
underwent necroptosis, the highest number of apoptotic
cells were also detected in these populations (CD8'
T cells: 21% apoptotic vs. 54% necroptotic; CD4™ T cells:
37% apoptotic vs. 45% necroptotic). By contrast, B cells
and monocytes displayed low amounts of apoptotic cells
(B cells: 8% apoptotic vs. 68% necroptotic; monocytes: 5%
apoptotic vs. 59% necroptotic). These data were further
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corroborated by an apoptosis protein array, showing that
the induction of proteins involved in the apoptotic pro-
cess was strongly induced in cell types that were mainly
driven into apoptotic cell death (Supplementary Fig. 5).
These results highlight the different susceptibilities of
PBMC subsets to preferentially undergo apoptosis or
necroptosis after high-dose y-irradiation.

To assess kinetics and dose dependency of apoptosis
and necroptosis induction after y-irradiation on the
molecular level, we evaluated cleavage of caspase-3 (c-cas
3) and phosphorylation of RIPK3 and MLKL, respectively
(Fig. 5¢, d). MLKL phosphorylation, indicative of induc-
tion of necroptesis, occurred in a dose-dependent man-
ner, reaching its maximum at an irradiation dose of 15 Gy
(Fig. 5d). Comparably, caspase-3 cleavage was induced by
y-irradiatien starting frem 30 Gy. For further character-
ization of the irradiaticn-induced pregrammed cell death,
phosphorylation of RIPK3, MLKL, and c-cas 3 was
assessed at different time points. While sustained phos-
phorylation of RIPK3 was detected starting from 2 h post
irradiation, phosphorylation of MLKL and caspase-3
cleavage displayed highest levels 24 h post irradiation
(Fig. 5¢). Interestingly, we detected two smaller bands of
35 and 25 kDa in the phosphorylated (p)-RIPK3 Western
blot. In contrast to y-irradiation, induction of RIPK3 and
MLKL phosphorylation by TNF-a and zVAD peaked as
soon as 2 h after stimulation (Supplementary Fig. 6) and
did not induce cleavage of p-RIPK3. Since MLKL phos-
phorylation occurs rapidly after induction of necroptosis,
our finding that MLKL phosphorylation peaked 24 h after
y-irradiation suggests an indirect induction of necroptosis
in PBMCs after exposure to y-radiation.

Pro-angiogenic capacity of PBMC secretome requires
irradiation-induced necroptosis

Next, we determined whether the type of cell death
affects the pro-angiogenic potential of PBMC secretome.
Therefore, irradiated PBMCs were cultivated in the pre-
sence of ZVAD, a pan-caspase inhibitor, or necrostatin-1,
an inhibitor of necroptosis, and the angiogenic capacity of
the resulting secretome was assessed in murine aortic ring
sprouting assays (Fig. 6b, ¢} and tube formation assays
with HUVECs (Fig. 6d, ). Irradiation-induced c-cas 3 and
phosphorylation of MLKL were efficiently abrogated by
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zVAD and necrostatin-1, respectively (Fig. 6a), indicating
that y-irradiated PBMCs treated with zVAD and
necrostatin-1  preferentially undergo apoptosis or
necroptosis. In both assay systems, blood vessel sprouting
was strongly induced by the secretome of irradiated
PBMCs (Fig. 6b—e), as described above, and was com-
parably high with blocked caspase-dependent apoptosis
(zVAD, Fig. 6b—e). Intriguingly, the pro-angiogenic
capacity of the secretome was remarkably compromised
when necroptosis was inhibited by necrostatin-1 (Fig.
6b—e). Freshly added zVAD and necrostatin-1 to the
secretome of y-irradiated PBMC during the assay had no
effect on vessel sprouting (Supplementary Fig. 7a). Our
data indicate that necroptosis represents an indispensable
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prerequisite for the pro-angiogenic action of secretomes
derived from y-irradiated PBMCs.

Necroptotic cell death in y-irradiated PBMCs is induced via
paracrine activation of the TNFRSF1B

We next sought to elucidate the mechanism by which y-
irradiation induces necroptosis in PBMCs. Since previous
studies identified the TNF-a pathway as one of the main
drivers of necroptosis, and our bioinformatics analysis
suggested an activation of the TNFRSF1B signalling
pathway in response to irradiation, we analyzed the
expression of TNF and its receptors (TNFRSFIA and
TNFRSFIB). Low TNF expression was detectable in
PBMCs and all subfractions, with highest mRNA levels in
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monocytes (Fig. 7a). Whereas TNFRSFIA showed little
expression values in PBMCs and PBMC subsets (Fig. 7b),
TNFRSFiB was strongly expressed in PBMCs and to a
minor degree in all subsets (Fig. 7¢). Interestingly, we
neither detected soluble TNF-a nor LTA, a TNF homo-
logous ligand of TNFRSF1A and TNFRSF1B, in the
PBMC secretome (not shown). However, Western blot
analysis showed a significant induction of membrane-
bound TNF (mTNF) in PBMC after y-irradiation (Fig. 7d).
To further investigate the necroptosis signalling cascade,
we specifically blocked both TNF receptors of y-irradiated
PBMCs with monoclonal blocking antibodies and asses-
sed MLKL phosphorylation. As shown in Fig. 7e, induc-
tion of necroptosis was only effectively abolished by
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neutralizing antibody directed against TNFRSF1B, but not
by TNFRSF1A. Our data thus indicate that y-irradiation-
induced necroptosis of PBMCs occurs via an mTNE-
TNFRSF1B signalling cascade.

Discussion

In the past, stem cell therapies had been praised as a
promising therapeutic option for tissue regeneration of a
variety of damaged organs® ", Yet, most of the high
expectations from in vitro and animal experiments were
disappointed when stem cells employed in human clinical
trials showed only minor tissue-regenerative potential*’.
We have reported previously that the release of regen-
erative factors is not an exclusive feature of stem cells,
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since secretomes derived from y-irradiated PBMCs also
displayed high tissue-regenerative activity in various
experimental models. These regenerative effects were
mainly attributed to the secretomes’ pro-angiogenic and
cytoprotective properties'>'*'*'%, These results raised the
question whether all cell types are potentially capable of
producing and releasing sufficient factors with tissue-
regenerative properties after stress-induced cell death.
Our analyses revealed pronounced differences in gene
expression and released proteins between the respective
cell types and total PBMCs in response to y-irradiation.
Importantly, certain cytokines were exclusively released
when irradiated PBMCs were cultured together, but were
not present in the secretomes derived from purified cell
populations, In addition, using murine aortic rings for
blood vessel sprouting assays, high pro-angiogenic activity
was only detected in secretomes from total PBMCs. Both
analyses suggest that a crosstalk of PBMC subpopulations
is required for the release of angiogenesis-promoting
factors. Therefore, our study argues against the initial
hypothesis that the secretome of any stressed cell type
exhibits tissue-regenerative characteristics and suggests
that paracrine communication between different cell
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types is fundamental for the release of a unique compo-
sition of tissue-regenerating mediators. Thus, future
clinical studies on damaged tissue will elucidate the full
tissue-regenerative efficacy of the PBMC-derived secre-
tome. Since toxicological studies and studies on the viral
safety of an allogeneic secretome from y-irradiated PBMC
produced under Good Manufacturing Practice (GMP)
conditions have already been successfully conducted, our
study paves the way for a first clinical trial in the indica-
tion of diabetic foot ulcer*™*S,

Here, we also investigated the impact of the type of cell
death on the tissue-regenerative capacity of the secre-
tome. Although y-radiation is a known inducer for both
apoptosis and necroptosis®*”~', it is unknown whether
y-radiation-induced necroptosis has tissue-regenerative
effects or further aggravates tissue damage. While Castle
et al.*’ showed that mice lacking RIP3, a critical molecule
in the necroptosis pathway, were not rescued from acute
radiation syndrome, a protective activity of necrostatin-1
administration in mice after lethal full body irradiation
has been reported in several studies* "> Although the
underlying mechanisms are still not known, the afore-
mentioned data by Huang et al.*” and Steinman et al*
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suggest that inhibition of necroptosis by necrostatin-1 is
indeed favorable in a lethal setting, due to the prevention
of massive cell death and organ destruction. To the best of
our knowledge, our study is the first to describe that
necroptosis of PBMCs exerts pro-angiogenetic effects,
thereby potentially contributing to tissue regeneration in
chronically damaged tissues. As shown by aortic ring
assays, addition of necrostatin-1 te PBMCs before irra-
diation abolishes its pro-angiogenic activity, indicating
that necroptosis is important for the release of factors
involved in blood vessel formation. However, since
PBMCs used in this study were ex vivo y-irradiated and
then applied to the tissue, we do not currently know
whether similar processes are also present in stressed
tissue in vivo, or in tissues under physiological conditicns.
Our study builds a basis for further studies, which would
address these questions in more sophisticated experi-
ments. Another interesting finding was the detection of
low molecular forms of phosphorylated RIPK3 after y-
irradiation. Whether these forms are still active or only
non-functional degradation preducts cccurring during
massive cell death after y-irradiation remains to be
determined.

Here we identified the TNF/TNFRSF1B signalling
cascade as an inducer of necroptosis after y-irradiation.
In line with our observations, recent guidelines of the
American College of Rheumatology instruct doctors to
stop medication with anti-TNF therapy before surgery
to avoid wound healing problems, highlighting the
importance of TNF for proper wound healing, pre-
sumably due to its necroptosis-inducing action®.
Interestingly, release of soluble TNF was not detectable
in our secretomes. However, Western blot analysis
revealed a significant increase in membrane-bound
TNEF. When analyzing TNF receptors, we found strong
expression of TNFRSF1B. This is in line with previous
studies, suggesting that mTNF preferentially signals
through TNFRSF1B***°. Currently, the mechanism of
y-radiation-induced necroptosis is still not fully under-
stood. While activation of necroptosis by TNF requires
additional inhibition of apoptosis (Supplementary Fig. 7b),
y-irradiation simultaneously induced necroptosis and
apoptosis in PBMC?**°7_ Since high-dose ionizing
radiation leads to DNA damage, activation of cytosolic
DNA sensors could account for this phenomenon. Indeed,
the cytosolic DNA sensor DNA-dependent activater of
interferon regulatory factors has been shown to directly
induce necroptosis via RIPK3 after virus infection®.
Further studies are needed to investigate whether similar
mechanisms also account for the induction of necroptosis
in our experimental setting.

In conclusion, we could demonstrate that secretomes of
PBMCs and PBMC subsets show different tissue-
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regenerative capacities, refuting the paradigm that any
cell type is able to release paracrine factors with regen-
erative potential. Furthermore, we identified the TNF/
TNERSF1B signalling pathway as the mechanism under-
lying the y-irradiation-induced release of pro-angiogenic
factors. Based on these findings we believe that necrop-
tosis, although seemingly paradox, is indeed an essential
prerequisite for tissue regeneration and that forced
induction of necroptosis might facilitate the development
of novel therapeutic approaches in the near future.
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Supplementary Figure 1. Purity of isolated PBMC subsets. Polychromatic flow cytometric
analysis for purified PBMC subsets. a) Forward-sidescatter dot plot of PBMCs. b) Purified
natural killer cells expressing CD56 (99.4% cell purity). c¢) Purified B-cells expressing CD19
(93.3% cell purity). d) Purified monocytes expressing CD14 (97.3 cell purity). e) Purified CD4
T-cells expressing CD3 (95.4%). f) Purified CDS8 T-cells expressing CD3 (98% cell purity).
One experiment out of three is shown.
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Supplementary Figure 2
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Supplementary Figure 2. Preparation of aortic rings. a) Mice were sacrificed via cervical
dislocation, the rib cage was opened, heart and lungs were removed. ¢) Thoracic aorta including
periaortic adipose tissue was carefully dissected from vertebrae. c) Adipose tissue was
surgically removed and the aorta was cut in 1 mm-thick rings.
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Supplementary Figure 3
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Supplementary Figure 3. Cytokine protein array of y-irradiated PBMCs. a) Membrane
arrays detecting 102 cytokines and cytokine-related proteins were incubated with
supernatant from 25x10° y-irradiated PBMCs 24 hours after incubation. b) Legend for spotted
antibodies.
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Supplementary Figure 4

LL

Annexin + PI

£
X
QO
c
c
<

(8] o
-
Viable

Apoptotic | &2

Supplementary Figure 4. Representative image stream micrographs of viable, apoptotic, and
necroptotic cells. Viable cells were morphologically characterised by their intact cell shape in
the bright field (BF) channel and by the lack of annexin and propidium iodide (PI). Apoptotic
cells showed decreased cell volume, exposed Annexin on the surface, and displayed nuclear
fragmentation (Pl positive). Cells undergoing necroptosis were enlarged, indicating
cytoplasmic swelling and the nucleus remained non-fragmented.

55



Supplementary Figure 5
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Supplementary Figure 5. Array of apoptosis-related proteins secreted by y-irradiated
PBMCs. a) Membrane arrays detecting 35 apoptosis-related proteins were incubated
with cell lysates from 25x10° y-irradiated PBMCs 24 hours after exposure. b) Plots of PBMCs,
NK-cells, monocytes, CD4 T-cells, CD8 T-cells, and B-cells are shown. Table lists the proteins
analysed.
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Supplementary Figure 6
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Supplementary Figure 6. TNFa and zVAD induce necroptosis in PBMCs. PBMCs were
stimulated with a combination of TNFa and zVAD and cultivated for up to 24 hours. Co-
incubation of PBMCs with TNFa and zVAD abrogated caspase-3 cleavage and lead to
phosphorylation of RIPK3 and MLKL. After stimulation with TNF and zVAD phosphorylated
RIPK3 was shown with 57 kDA displayed its peak after 2h, whereas the cleavage product seen
after irradiation (Fig. 5) at 35kDA and 25kDA could not be detected, n=3.
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Supplementary Figure 7
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Supplementary Figure 7. TNFa induces apoptosis and necroptosis in PBMCs which were
inhibited by zVAD and necrostatin, respectively. a) Aortic rings were incubated with the
secretome of y-irradiated PBMCs together with freshly added zVAD, necrostatin or a
combination of both for 3 days. Thereafter calcein (green dye) was added to label viable cells.
Neither zZVAD nor necrostatin significantly inhibited blood vessel sprouting in the aortic ring
assay. Scale bar, 200 um. n=3. b) Endothelial cells were incubated with the secretome of -
irradiated PBMCs together with freshly added zVAD and necrostatin for 3 hours after
starvation overnight. Cell Gro medium was used as negative control. The tube formation was
diminished in the medium control, yet the fresh addition of zVAD and necrostatin had no
effect on endothelial outgrowth compared to the PBMC secretome. Scale bar, 200 um. c)
PBMCs were stimulated with combinations of TNFa, zZVAD and necrostatin and were cultivated
for 24 hours. Stimulation with TNFa resulted in cleavage of caspase-3 (c-cas 3). Co-incubation
of PBMCs with TNFo, and zVAD abrogated caspase-3 cleavage and lead to phosphorylation
MLKL while co incubation with necrostatin favored caspase-3 cleavage. n=3
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9.3 Interlude

An increasing number of chronic wound healing deficiencies are counted in the US (estimated
6,5 million patients) due to the rising numbers of diabetes.”?°> These chronic non-healing
ulcers lead to increasing economic burden, as the treatment of one diabetic ulcer costs nearly

50.000$.7%°*2% These great expenses illustrate an unmet need in patient care.

For an adequate tissue repair and wound healing many factors such as growth factors,
inflammatory cells, oxygen and blood perfusion to deliver these factors to the required area
are needed.?®*2% |n diabetic patients the vasculature is often impaired and further aggravating
the dysfunctional healing process.?®*2%6 As we have showed previously, the secretome of
irradiated PBMC could provide enhanced angiogenesis and growth factors/cytokines

necessary to improve wound healing.5"-89.281.282.297

Yet for every promising therapeutic compound various stages to proof safety and tolerability
have to be fulfilled. Therefore, the safe application of autologous APOSEC (which was

produced according to current GMP guidelines) was tested in a clinical phase | study.
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Developing effective therapies against chronic wound healing deficiencies is a global priority. Thus

we evaluated the safety of two different doses of topically administered autologous APOSEC, the
secretome of apoptotic peripheral blood mononuclear cells (PBMCs), in healthy male volunteers

with artificial dermal wounds. Ten healthy men were enrolled in a single-center, randomized, double-
blinded, placebo-controlled phase 1 trial. Two artificial wounds at the upper arm were generated using

a 4-mm punch biopsy. Each participant was treated with both topically applied APOSEC and placebo

in NuGel for 7 consecutive days. The volunteers were randomized into two groups: a low-dose group

(A) receiving the supernatant of 12.5 X 10° PBMCs and a high-dose group (B} receiving an equivalent

of 25 X 10° PBMCs resuspended in NuGel Hydrogel. Irradiated medium served as placebo. The primary
outcome was the tolerability of the topical application of APOSEC. All adverse events were recorded
until 17 days after the biopsy. Local tolerability assessment was measured on a 4-point scale. Secondary
outcomes were wound closure and epithelization at day 7. No therapy-related serious adverse events
occurred in any of the participants, and both low- and high-dose treatments were well tolerated. Wound
closure was not affected by APOSEC therapy.
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The global incidence of non-healing wounds is soaring due to increasing prevalence of diabetes and obesity. These
wounds are a major cause of morbidity, have a negative impact on quality oflife, and result in enormous costs
for the health care system?. Although several highly expensive products are on the market, the process of wound
healing takes a long time and is often incomplete, entailing amputation in severe cases®.

Many approaches to new therapies have been investigated over the last decades, but no sufficient therapeutic
option yet exists. Wound healing involves a complex interplay of various cell types as well as cellular and bio-
chemical events. This process depends on a supply of oxygen, nutrients, and growth factors. Diabetic patients
have an impaired vasculature, which results in reduced blood perfusion to the wound area, leading to decreased
migration of inflammatory cells> *. However, inflammatory cells are an essential part of chronic wound heal-
ing, acting in both beneficial and harmful ways®~. The application of stem cells, genetically modified cells, or
paracrine factors on chronic wound areas has led to encouraging results, regarding wound healing®-'°. A paper
by Holzinger ef al. showed that topical application of activated, autologous peripheral blood mononuclear cells
(PBMCs) effectively initiated epithelialization of ulcerated, dermal wounds and that wound closure was present
in 92% of patients after 60 days, compared to standard therapy'". In particular, paracrine factors are being consid-
ered as a promising option because they provide pro-angiogenic and anti-apoptotic mediators for cell prolifera-
tion and migration'”. To advance Holzinger’s “activated PBMC-based therapy.” we applied the cell-free secretome
of apoptotic PBMCs, the aroptotic PBMC sEcretome (APOSEC), produced according to good manufacturing
practice (GMP) guidelines. APOSEC contains a myriad of cytokines, lipids, proteins, exosomes, and vasoactive
substances®. To increase the secretory output of PBMCs, we induced apoptosis via ionizing radiation!*-7.

In a recent publication, we reported positive effects of APOSEC on angiogenesis and skin regenerationin a
mouse wound-healing model and in a clinically more relevant porcine third-degree burn model!® . Further
approaches in preclinical models revealed that the secretome of PBMCs attenuates hypoxic injury in acute and
latent myocardial infarction'® 19-2°, spinal cord injury, and stroke?" %, Additionally, APOSEC augments de novo
secretion of antimicrobial peptides” and attenuates experimental myocarditis by inducing caspase 8-dependent
CD4 T cell apoptosis®®. These promising preclinical data encouraged us to initiate the production of APOSEC
for human application under the auspices of the Austrian Agency for Food and Drug Safety (AGES) (AGES-Nr
INS-480102-0013-007). APOSEC as a drug substance has been classified as “biological” and can be applied in a
personalized manner (autologous) or in an allogeneic approach (pooled product). This first clinical trial using
autologous APOSEC was approved by the certified authority (AGES) to explore its safety and tolerability in arti-
ficial skin wounds in healthy, male participants.

Materials and Methods

Trial design and study population. This study was a prospective, single-center, randomized, dou-
ble-blinded, placebo-controlled, dose-finding phase 1 trial to assess the safety and tolerability of two different
doses of autologous APOSEC in attificial dermal wounds. A secondary potential objective was to investigate the
effect on wound closure. The study population consisted of 10 healthy male volunteers. Five participants were
assigned to each group: alow-dose group (GMP APOSEC from 12.5 % 10 irradiated, Iyophilized PBMC/ml) and
a high-dose group (GMP APOSEC from 25 x 10° irradiated lyophilized PBMC/ml). (Supplementary Table S1 in
the Supplement). Medinm served as placebo. Both APOSEC and placebo were applied on two artificial dermal
wounds (proximal and distal) on the upper non-dominant arm of the participant to reduce intra-individual reac-
tions to a minimum (Fig. 1). (Exclusion criteria can be accessed at ClinicalTrials.gov Identifier: NCT02284360;
https://clinicaltrials.gov/ct2/show/NCT02284360).

Trial registration. EudraCT-Number: 2013-000756-17, NCT 02284360, AGES INS-480102-0013-007
https://clinicaltrials.gov/ct2/show/NCT02284360term=02284360&rank=1, ClinicalTrials.gov Identifier:
NCT02284360 (First received: October 30, 2014; Last updated: September 25, 2015; Last verified: September
2015).

Screening/run-in phase.  After eligible study volunteers gave written informed consent, clinical and labora-
tory testing was performed to verify inclusion and exclusion criteria. Physical examination and vital signs were
obtained and a standard 12-lead ECG was performed. Blood samples for hematology, serum chemistry, virology
and urine samples for urine analysis were obtained. Demographic and medical history data as well as concomi-
tant medication were assessed. Before initiation of the treatment phase, 450 ml blood was collected at the GMP
facility at the Austrian Red Cross Blood Transfusion Service of Upper Austria (Linz, Austria) (AGES INS-480102-
0013-007), and autologous APOSEC, was produced according to GMP guidelines (Fig. 2). Afterwards, APOSEC
was transferred to the Pharmacy of the Medical University of Vienna by Med Log courier.

Randomization/treatment phase. Randomization and blinding were performed by the AKH Vienna pharmacy
(Vienna, Austria). To reduce potential adverse events resulting from the investigative medicinal product IMP) or
wound dressing (Tegaderm Film 10 x 12 cm, 3M, Maplewood, MN, US), a blinded test treatment with APOSEC
and placebo on intact skin of the inner upper dominant arm was performed 24 h before initiation of the treatment
phase. Any study participants who developed adverse events were excluded from the treatment phase. If adverse
events were not considered to be IMP related, these volunteers were replaced. (Supplementary Table §2 in the
Supplement).

Lyophilized APOSEC or the culture medium CellGro was resuspended in 200l 0.9% NaCl until complete
dissolution, followed by mixing with 800l NuGel Hydrogel (Systagenix, Gatwick, West Sussex, UK) for topical
administration only. The so produced verum or placebo was supplied in single-use tubes as a sterile preserved
white gel.
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| Assessed for eligibility (n=30)

Excluded (n=20)
+ Not meeting inclusion criteria (n=17 )
+ Declined to participate (n=3 )

+ Otherreasons (n= 0)

Randomized (n=13)

l [ Allocation | l

L
Allocated to APOSEC™ (n=13) Allocated to Placebo (n=13)
+ Received allocated intervention (n=13) + Received allocated Placebo (n=13)
+ Did not receive allocated intervention (n=0) + Did not receive allocated intervention (n=0)

Follow-Up

Lost to follow-up (n=0) Lost to follow-up (n=0)

Discontinued intervention (n=3) Discontinued intervention (n=3)

= Drop-outs after test treatment (n=2 due to = Drop-outs after test treatment (n=2 due to
a deviation in IMP production, n=1 due to a a deviation in IMP production; n=1 dueto a
local tolerability effect in the placebo local telerability effect in the placebo
treated area) treated area)

| Analysis
Analysed (n=10) Analysed (n=10)
+ Excluded from analysis (n=3) «+ Excluded from analysis (n=3)

Figure 1. CONSORT Study Design of MARSYAS. The screening and design of the study were developed and
conducted by the Department of Clinical Pharmacology of the Medical Universily of Vienna. Ten participants
were included after giving written informed consent. Allocation to the low-dose group A and high-dose group B
was completed after an interim analysis. To avoid inter-individual differences, every study participant received
both verum and placebo on different positions on the same arm. The randomization of verum and placebo to
the proximal or distal artificial arm wound was performed in a 1:1 ratio.

Analysis of
soluble factars
(Quality control)

T

Paracrine
secretion of
proteins
Irradiation with 24 hours (secretome) Lyophilizat Topical use on

. yophilization N
60 Gy = incubation = = = |skin and wounds

Separation of
PBMC from |ep
peripheral blood

Figure 2. APOSEC production. Preparation process of APOSEC according to good manufacturing practice
(GMP) in the facility of the Austrian Red Cross Blood Transfusion Service of Upper Austria {Linz, Austria),
with the following steps. The first step was separating the PBMCs from the whole blood samples, inducing
apoptosis via jonizing irradiation, and incubating for 24h. During this 24 h, the PBMCs secrete a multitude
of cytokines and chemokines. The quantity of cytokines is measured using ELISA and immunoassay
(Luminex®10018) for quality control. After the lyophilization, APOSEC is ready for topical use on skin and
wounds.

Artificial wounds were generated by two 4-mm punch biopsies (distal and proximal, respectively) on the inner
upper side of the non-dominant arm under local anesthesia. The distance between both biopsies was at least
8cm. After being cleaned with 0.9% NaCl, one wound was treated with approximately 1ml of APOSEC and the
second with approximately 1 ml of placebo according to previous randomization. Wound dressing was applied
covering the whole wound area. On the following 6 days, APOSEC and placebo were re-applied daily. At day 7,
treatment was terminated, wound closure and scar formation were evaluated, and wounds were closed with a
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I -4-5 weeks -1-3 weeks do dl d2-6 d7 d17 >

Screening " APOSEC production ||TEsttrEalmem Biopsy :"::f:";"(‘;: :\:q:..?:.m End of study examination |

Application of treatment Re-biopsy

Photographs, planimetry, evaluation of applicability

|Assessmem of adverse events |

Figure 3. Study timeline and application of APOSEC/placebo. Study timeline (a). Application of APOSLC/
placebo on intact skin (test treatment) (b). Bandaging of study site (c). Maximal (blue line) and minimal (red
line) diameter of biopsy wound (d). Applied IMP/placebo on artificial wound (e). Tissue sample from day 7,
boxes show wound, transition, and healthy zones in which measurements were performed (f).

suture. During the whole treatment period, wounds were assessed for the appearance of adverse events, and pho-
tographs for planimetric assessment were taken (Fig. 3). For standardization of the planimetric measurements, a
pacer (CASTEL-COP-DIGI, CASTEL-L, Novollex, Germany), ensuring Lhe exact same distance [or every piclure
was used (Supplementary Figure $1).

Follow-up phase.  Lach study participant was asked to return to the clinic to allow evaluation of whether or not
adverse events emerged during the whole study period. Al 17 days after treatment initiation, study participants
returned for a follow-up visit. Sutures were removed, a physical examination was performed, vital signs and
adverse events were assessed, and blood samples were taken. (Supplementary Table $3 in the Supplement),

Authorization and ethics statement. Lhe study was approved by the ethics committee of the Medical
University of Vienna, Austria (EK Nr. 1285/2013) and conducted according to the Declaration of Helsinki. This
trial was registered in the EU clinical trial register {EudraCT-Number: 2013-000756-17; NCT02284360; AGES
INS-480102-0013-007).

Production of APCSEC and placebo. Blood obtained from each study volunteer at the Austrian Red
Cross Blood Transfusion Service of Upper Austria was used to produce autologous APOSEC according to current
GMP guidelines. PBMCs were separated from whole blood samples of the participants by density centrifugation
using LSM 1077 {Lymphocyte Separation Medium, Lonza, Switzerland). Removal of LSM was achieved by two
washing steps using Dulbecco’s phosphate-buffered saline (Lonza, Switzerland). PBMCs were resuspended in
phenol red-free CellGro GMP DC medium (CellGenix, Freiburg, Germany) containing no xenogeneic proteins.
A sample was drawn for complete blood count to adjust white blood cells to a concentration of 25  10° cells/
ml Irradiation with 60 Gy induced apoptosis of PBMCs. By cultivation of apoptotic PBMCs in CellGro GMP
DC medium, release of the secretome was achieved, After incubation for 24h =+ 2h, cells were removed by cen-
trifugation. The supernatant containing the secretome was sterile filtered at a pore size of 0.22 pm. The adequate
production of APOSEC was defined by appropriate secretion of the following important cytokines: interleukin
(IL)-8 (0-5214 pg/ml), epidermal growth factor (EGF; 25-226 pg/ml), and transforming growth factor-p (TGF-3;
2575-21732 pg/ml).

Lyophilized culture medium not containing any cells (CellGro, CellGenix, Freiburg, Germany) served as
placebo.

Quality and stability.  The raw material, i.e., separated PBMCs, was irradiated with 60 Gy and cultured for 24 h.
The supernatant of the cells was obtained and subjected to quality assurance protocols. Quality control of the
product was realized in several steps. First, sterility testing of the final product was performed. Second, induction
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Figure 4. Effect of APOSEC on wound healing. Mean progression as well as the standard deviation (vertical
lines) of minimal {a) and maximal (b) diamecters and area (<) of the artificial wound during 7 days, represented
as the difference of APOSEC - placebo. (red, group A =low-dose group; black, group B =high-dose group).

of apoptosis was determined before irradiation and after cultivation of the cells by fluorescence-activated cell
sorting analysis using the FITC Annexin V Apoptosis Detection Kit (BD Biosciences, Franklin Lakes, NJ, US).
Third, concentrations of IL-8/C « CL8 (C » C-motive-chemokine 8), EGT, and TGT- were determined with
enzyme-linked immunosorbent assay (ELISA) to verify successful production of APOSEC according to GMP
definitions. The fourth part of quality control was endotoxin, mycoplasma and sterility testing of the final prod-
uct. Cell culture supernatant samples were additionally screened for herpes contamination via polymerase
chain reaction. AGES approved APOSEC as a lest product according Lo current guidelines of the Austrian Drug
Registration and Administration Act (AGES INS-480102-0013-007).

Evaluation of adverse events. Adverse events were documented if reported by study participants or
observed by physicians. Skin alterations were graded using a local tolerability assessment scale (0 = no visible
reaction; 1= faint, minimal erythema; 2 = erythema; 3 = erythema with induration or vesicles; and 4 = severe
erythema with induration, vesicles, or bullae or pustules and/or erosion/ulceration). A detailed description of all
adverse events can be found in the supplementary ('L'able $2).

Evaluation of wound healing progression.  Progression of wound healing was evaluated by planimetric
measurement of photographs, expressed as minimum diameter, maximum diameter, and area measured from
day 1 to day 7. (Fig. 4) Measurements were performed using Image] version 1.48 v (Wayne Rasband, National
Institutes of Health, USA). {(Supplementary Tables $4, 55, and $6) Morcover, wound healing and condition
were assessed in comparison to prior day (stable, improving, impaired) according to the following criteria:
presence or absence of inflammaltion, presence or absence ol exsudale on the dressing, presence or absence ol
re-epithelialization and presence or absence of undermining and tunneling. Local tolerability was evaluated using
the following criteria: (0 — no visible reaction; 1 — faint, minimal erythema; 2 — erythema; 3 — erythema with
induration or vesicles; and 4 —severe erythema with induration, vesicles, or bullae or pustules and/or erosion/
ulceration).

Immunohistochemical staining. For microscopic examination, lissue specimens were collected on day
land day 7.
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Immunohistochemical staining was performed for CD45, keratin 10, factor VIII, and podoplanin. A detailed
description of the staining and results can be found in the supplementary material.

Statistical analysis. Data obtained were evaluated statistically using R version 3.2.1., IBM SPSS Statistics
version 23 (SPSS Inc., Chicago, USA), and GraphPad Prism 6 software (GraphPad Software Inc., La Jolla, CA,
USA). The analyses were performed for the “as treated” population using descriptive statistics. For the continuous
parameters of wound and scar assessment, means, standard deviations as well as medians, quartiles, minimaand
maxima were calculated separately for the two APOSEC groups and the placebo group as well as for the difference
between APOSEC and placebo for all investigated days.

Data Availability. The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Results
Study population.  InFebruary 2015, fourteen volunteers were assessed for study eligibility, received a case
report form (CRF) number, and gave their written informed consent. One was preliminarily excluded before
receiving any test treatment, due to a screening failure. Two study participants dropped out due to a deviation in
production of APOSEC, and one was excluded because of erythema at the site of placebo application on intact
skin at day 0. The proband (CRF 9), excluded before test treatment was included in the 17 screened subjects not
meeting inclusion criteria in Fig. 1. The 3 participants excluded due to production deviation and erythema at the
placebo treated areal were declined to participate (Fig. 1). The “as treated” population consisted of 10 healthy male
study participants.

Supplementary Table S1 describes participant characteristics at the beginningand end of study. At the baseline
and end of study visit, study subjects assigned to groups A and B did not show any relevant differences.

Topical application of APOSEC is safe and well tolerated. The main objective was to monitor for
and identify adverse events after topical application of APOSEC. All adverse events were reported by participants
or observed by study researchers (from the Department of Clinical Pharmacology of the Medical University of
Vienna, Austria) and are shown in (Supplementary Table S2 in the Supplement). All identified events were char-
acterized as mild.

Wound closure and APOSEC. Due to the short intervention time, we could not demonstrate a further
increase in wound closure progression in wounds treated with APOSEC GMP compared to wounds treated with
placebo. No wound closure in the artificial wounds was assessed. Figure 3 shows mean time course for maximum
wound diameter {A), minimum wound diameter (B), and wound area (C) for the relative difference between
verum and placebo measurements separately for group A (red line: 12.5 x 10 PBMC/ml) and B (black line:
25.0 x 109 PBMC/ml). A value below 0 indicates improved wound closure in the APOSEC group as compared to
placebo.

Discussion

In this first clinical prospective phase 1 study utilizing the autologous secretome of PBMCs in humans, we showed
that the application of APOSEC is safe and well tolerated in human intact skin, as well as on the open wound
area. The secondary endpoint of wound closure was not achieved, which is attributable to the short duration of
the study.

This study was performed as a “prerequisite” for the further development of the allogeneic APOSEC product,
derived from healthy blood donors in order to treat patients with non-healing wounds. This disease causes in our
society an ever increasing financial and psychological burden - for both, patients and the health care system®.

In particular, cell-based therapies are a rapidly expanding sector in wound closure treatments. For example,
the application of cellular 3D fibroblast constructs (Dermagraft) (Shire Regenerative Medicine, San Diego, CA)
received market authorization in multiple countries after Phase 3 trials®*?*. Another approach has been the use of
allogeneic gamma-irradiated cord blood mononuclear cells in a patient with critical limb ischemia, which led to
improved wound closure and vascularity®.

A similar method was chosen for a clinical trial financed by Macrocure Ltd. In two US Food and Drug
Administration (FDA)-approved studies, hypo-osmotic shock-exposed allogeneic PBMCs were injected
subcutaneously for the treatment of diabetic and venous foot ulcers®™ 3 (https://clinicaltrials.gov/ct2/show/
NCT01421966).

Both investigations were prematurely terminated because of futility (http://investor macrocure.com/releasede-
tail.cfm?Release] D=928245).

In contrast to these cell-based therapies, we have concentrated on the biological effects of paracrine factors
derived from stressed white blood cells. The supernatant provides a potent cell-free alternative, displaying a possi-
ble diminished immunogenicity as compared to cell-based therapy. APOSEC stimulates migration of fibroblasts,
keratinocytes, and endothelial cells in vitro'>'?, which are crucial elements in the physiology of wound healing.
Moreover, APOSEC contains significant amounts of antimicrobial peptides that possess antimicrobial activity
against opportunistic skin pathogens, especially Escherichia coli and Pseudomonas aeruginosa®. With regard to
the cataclysmic consequences of bacterial infection for wound regeneration and healing, in severe cases involv-
ing non-remediable tissue impairment necessitating amputation, this particular attribute emphasizes the clinical
potential of APOSEC 2.

Results from a murine wound-healing model, as well as a porcine third-degree burn model have already
indicated the effectiveness of topical application of PBMC-derived paracrine factors'®!% Mildner ef al. showed
in this first investigation that the PBMC secretome increases angiogenesis and wound closure in mice'® . All
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of these features are most desirable for wound healing, but it is a fact that the PBMC secretome is a mixture of
paracrine factors containing multiple pro-angiogenic proteins, lipids, and exosomes'®. From our point of view, the
observed effects are not attributable to a single factor but to the combination of different components of APOSEC.
This hypothesis has already been corroborated by Lichtenauer ef al., who selectively blocked different factors,
including matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), and IL-8, and failed
to attenuate the biological activity in selected potency assays'®. Thus, the identification of a single mechanism of
action (MOA) remains challenging because on the one hand, we deal with a complex composition of paracrine
factors, and on the other hand, we deal with a plethora of biological effects. Based on ourlong lasting research in
the effect of PBMC secretome (APOSEC) we feel that the search for “the target” or “the MOA” in skin regenera-
tion is not feasible®.

Before the “off the shelf” drug substance of allogeneic APOSEC enters regulatory approval, multiple require-
ments must be met by a drug developer. These are stability studies, development of validated potency assays, and
the completion of incremental and repeated dose toxicology studies in two animal species.

All of these manufacturing and regulatory hurdles must be accomplished before a transition into the clinic
will become reality. In addition to a positive verdict of the internal reviewer board (IRB), trial registration and
approval of national and super national regulatory agencies are mandatory.

Only a proof of concept phase II study will show whether scientific insights generated at our surgical research
laboratory will find its translation in the treatment of non-healing wounds.
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Supplementary

Adverse event screening

Participants were examined using laboratory tests, ECG and physical examination.

The physical examination included an examination of the abdomen, head, ears, eyes, nose,
throat, neck, neurological and psychiatric status, as well as pulmonary, cardiovascular, skeletal,
muscular, urogenitary tract; measurement of height and weight, BMI. The vital signs
measurement included the assessment of the systolic and diastolic pressure, as well as the pulse
rate.

Regarding the general physical examinations, no abnormalities were found at any of the
screened subjects.

The standard 12-lead ECG (25mm/s and 0.1mV/mm) was recorded after at least 5 minutes
rest at screening visit via Siemens Megacart or GE MAC 1200ST. For 5 subjects ECG
abnormalities were detected at the screening, but none was regarded as clinical significant by
the investigator team.

Hematology parameters included the determination of erythrocytes, leukocytes, hemoglobin, hematocrit, thrombocytes,
MCV, MCH, MCHC, PTT and aPTT. The levels were obtained at screening and the follow-up for
CRF Nr. 01,02,03,04,05,06,07,08,10,11,12,13,14). No abnormalities were detected at any of the
subjects.

Serum chemistry included the determination of sodium, potassium, total protein, albumin, chloride, BUN, creatinine,
glucose, ASAT, ALAT, AP and gamma GT. The levels were obtained at screening and the follow-up
for CRF Nr. 01, 02, 03, 04, 05, 06, 07, 08, 10, 11, 12, 13, 14). No abnormalities were detected at any of
the subjects.

Virology included the determination of HBs Ag, HCV Ab and HIV-1/2 Ab levels. No latent or
active infection was detected in any of the screened subjects.

Urine analysis included the determination of pH, leukocytes, nitrite, protein, glucose and
blood. No abnormalities were detected at any of the screened subjects regarding the pH
Analysis, moreover all revealed negative results with respect to the parameters measured at
the screening.
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Supplementary Tables

Supplementary Table S1. Disposition of subjects according to dose group

CRF Dose group Treatment | Treatment | Randomization | Status Drop-out Reason

Nr. proximal distal code

1 A (12.5%10% PBMC/ml) Placebo Verum DR2 Drop-out Day 1 Primary reason for discontinuation is deviation in IMP production (Sponsor decision)
Evaluation of test treatment on day 1: Area proximal: 01: faint, minimal erythema.
area distal: 03: erythema with induration or vesicles, hives, no itching, no pain, no
burning

2 A (12.5x10° PBMC/ml) Verum Placebo DR1 Drop-out Day 1 Primary reason for discontinuation is deviation in IMP production (Sponsor decision)
Evaluation of test treatment on day 1: Area proximal: 0: hives without itching, no
erythema. Area distal: 0: no visible reaction

3 A (12.5x10° PBMC/ml) Verum* Placebo* | DR2* Completed n.a n.a.

4 A (12.5x10° PBMC/ml) Placebo* Verum* DR1* Completed n.a n.a.

5 A (12.5x10% PBMC/ml) Verum Placebo DR1 Completed n.a n.a.

6 A (12.5x10° PBMC/ml) Verum Placebo DR1 Completed n.a n.a.

7 A (12.5%10° PBMC/ml) Placebo Verum DR2 Drop-out Day 1 Evaluation of test treatment on day 1: Area proximal: 01 faint, minimal erythema

8 A (12.5x10% PBMC/ml) Verum Placebo DR1 Completed n.a. n.a.

9 B (25.0x10° PBMC/ml) n.a. n.a. n.a Not Preliminary | Due to a screening failure, the patient was preliminarily excluded before test

included exclusion treatment

10 B (25.0x10° PBMC/ml) Placebo Verum DR2 Completed n.a n.a.

11 B (25.0x10° PBMC/ml) Placebo Verum DR2 Completed n.a n.a.

12 B (25.0x10° PBMC/ml) Verum Placebo DR1 Completed n.a n.a
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Supplementary Table S1. Disposition of subjects according to dose group (continued)

13 B (25.0x10° PBMC/ml) Verum Placebo DR1 Completed n.a. n.a.

14 B (25.0x10% PBMC/ml) Verum Placebo DR1 Completed n.a. n.a.

Supplementary Table S1

Summary of all study subjects and their treatment randomization. Dose group A represents the low-dose group. Dose group B was the high-dose group. Verum was applied
on the proximal artificial wound and placebo on the distal wound when coded with DR1. DR2 coded participants had an application of verum to the distal wound and placebo
to the proximal wound. The double-blinded study randomization was performed by the AKH pharmacy.

*Subjects CRF Nrs. 3 and 4 were treated vice versa from the assigned randomization code; this alteration occurred throughout the study. The outcome of the randomizer
web application revealed code DR1 for treatment at distal and code DR2 for treatment at proximal. The AKH pharmacy determined to administer placebo to the randomized
location.
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Supplementary Table S2. Index of adverse events

MedDRA Coding
CRF# | Description Applied LLT LL |SOC SOC | Comment/ Outcome Severity | Unexpected | Serious | Drug Action Relation
IMP T treatment
MedDRA Query
Coding
1 Faint, minimal Placebo Application 100 | Skin and 1004 | Comment: No follow-up | Notassessed due to grading as local | No Premature study | Not assessed due
erythema area site erythema | 030 | subcutaneous 0785 | graded as local tolerability via score discontinuation' to grading as
proximal Dose 41 tissue disorders tolerability 1 local
group A tolerability via
score
1 Erythema with Verum Application 100 | Skin and 1004 | Comment: No follow-up | Notassessed due to grading as local | No Premature study | Not assessed due
induration or site erythema | 030 | subcutaneous 0785 | graded as local tolerability via score discontinuation' to grading as
vesicles, hives Dose 41 tissue disorders tolerability 3 local
no itching, no group A tolerability via
pain, no burning score
area distal
2 Hives without Verum Hives 100 | Skin and 1004 | Comment: No follow-up Not assessed due to grading as local | No Premature study | Not assessed due
itching, no 201 | subcutaneous 0785 | graded as local tolerability via score discontinuation' to grading as
erythema area Dose 97 tissue disorders tolerability 0 local
proximal group A tolerability via
score
4 Redness right Not Application 100 | Skin and 1004 | Comment: Resolved Mild Yes No No No action Unlikely
upper arm at assignable | site redness 030 | subcutaneous 0785 | upper right arm
the patch area to verum 58 | tissue disorders
or placebo
Dose
group A
7 Sore throat Not Sore throat 100 | Respiratory, 1003 | Comment: Not | Resolved Mild Yes No No No action Unrelated
assignable 413 | thoracic, and 8738 | applicable
to verum 67 | mediastinal
or placebo disorders
Dose
group A

72




Supplementary Table S2. Index of adverse events (continued)

7 Erythema in area | Placebo Application 100 | Skin and 1004 | Comment: Resolved Mild Yes No No Premature study | Probably
proximal site erythema | 030 | subcutaneous 0785 | proximal; discontinuation, no | (documented as
Dose 41 tissue disorders further action both adverse
group A Graded as local events and local
tolerability tolerability
grade 1 effect).
8 Distal wound Placebo Wound 100 | Injury, poisoning, | 1002 | Comment: Resolved Mild Yes No No 01.05.2015: Cleaning Unrelated
opened bleeding 513 | and procedural | 2117 | distal and application of
and bleeding Dose 86 complications dressing
group A 04.05.2015: Photo
documentation
Assessment: slough dry
and application of
dressing
8 Two hematomas | Not Injection site 100 | General disorders | 1001 | Comment: left [ Resolved Mild Yes No No No action Unrelated
left upper arm assignable | hematoma 553 | and administration | 8065 | upper arm
around the to verum 71 site conditions
puncture site of | or placebo
the local
anesthetic Dose
group A
11 Sensitivity of Placebo Adhesive 100 | Skin and 1004 | Comment: Resolved Mild Yes No No No action Unrelated
skin by plaster 012 | subcutaneous 0785 | proximal
Steri Strips in the | Dose sensitivity 90 | tissue disorders
dressing area group B
proximal
14 Muscle tension Not Muscle tension | 100 | Musculoskeletal 1002 | Comment: left | Resolved Mild Yes No Transfer to | No action Unrelated
left arm assignable 705 | and connective 8395 | arm neurologis
to verum 41 tissue disorders t
or placebo
Dose
group B
14 Itching distal Placebo Wound itching | 100 | Injury, poisoning, | 1002 | Comment: Resolved Mild Yes No No No action Probably
wound 628 | and procedural | 2117 | distal
Dose 73 complications
group B
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14 Itching proximal | VerumDo | Wound itching | 100 | Injury, poisoning, | 1002 | Comment: Resolved Mild Yes No No No action Probably
wound se group B 628 | and procedural | 2117 | proximal
73 complications

Supplementary Table S2

Summary of all adverse events and attribution to verum and placebo. CRF#: ID of the study participants. In the dose group A, the low dose was applied, and in
dose group B, the high dose of APOSEC™ was applied. Tolerability was quantified using a 4-point local tolerability assessment scale (0=no visible reaction; 1=faint,
minimal erythema; 2=erythema; 3=erythema with induration or vesicles; 4=severe erythema with induration, vesicles, or bullae or pustules and/or

erosion/ulceration).
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Supplementary Table S3. Demographic characteristics of the study participants

Alcohol units Smoking
eCRF ICF Screening quantity
Nr. Visit date signed | ICF date Nr. Birth year | Gender | Ethnicity | Alcohol consumption | [units/week]* | Smoking [cigarettes/day]
1| 13 Feb 2015 | Yes 13 Feb 2015 17 1986 | Male Caucasian | Yes 1 | Non-smoker 0
2| 09 Feb 2015 | Yes 09 Feb 2015 16 1984 | Male Caucasian | No 0 | Non-smoker 0
3| 26 Feb 2015 | Yes 26 Feb 2015 21 1988 | Male Caucasian | Yes 1| Non-smoker 0
4| 20 Feb 2015 | Yes 20 Feb 2015 18 1989 | Male Caucasian | No 0 | Non-smoker 0
5| 23 Feb 2015 | Yes 23 Feb 2015 19 1994 | Male Caucasian | No 0 | Non-smoker 0
6| 24 Feb 2015 | Yes 24 Feb 2015 20 1989 | Male Caucasian | Yes n.a. | Non-smoker 0
7| 02 Mar 2015 | Yes 02 Mar 2015 22 1987 | Male Caucasian | Yes 2 | Smoker 20
8| 06 Mar 2015 | Yes 06 Mar 2015 25 1990 | Male Caucasian | Yes 3 | Non-smoker 0
10| 02 Mar 2015 | Yes 02 Mar 2015 23 1985 | Male Caucasian | No 0 | Ex-smoker 20
11| 25 Mar 2015 | Yes 25 Mar 2015 27 1989 | Male Caucasian | Yes 1| Smoker 4
12| 27 Mar 2015 | Yes 27 Mar 2015 28 1983 | Male Caucasian | No 0 | Non-smoker 0
13| 09 Apr 2015 | Yes 09 Apr 2015 30 1987 | Male Caucasian | No 0 | Smoker 7
14| 09 Apr 2015 | Yes 09 Apr 2015 29 1988 | Male Caucasian | No 0 | Smoker 10

Supplementary Table S3
Summary of all volunteers, depicting anonymization ID during the study (eCRF Nr.), date of signing the informed written consent (ICF), screening number, age, gender,

ethnicity, alcohol consumption, and smoking characteristics.
*1 unit equals half a liter of beer, 200 mL wine, or 50 mL of spirits.
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Supplementary Table S4. Time course of the maximum wound diameter for both dose groups

Day Group Statistic Verum Placebo Difference
Dav 1 Group A Mean (SD) 5.14 (0.45) 5.11 (0.28) 0.03 (0.46)
Median (Q1 to Q3) 4.94 (4.93 to 4.98) 5.07 (4.92 to 5.24) 0.02 (-0.09 to 0.09)
Min to Max 4.91t05.94 4.82 to 5.52 -0.59 t0 0.7
Group B Mean (SD) 5.21 (0.31) 5.31 (0.37) -0.09 (0.58)
Median (Q1 to Q3) 5.09 (5.07 to 5.19) 5.08 (5.08 to 5.49) -0.11 (-0.4 to 0.11)
Min to Max 4.97 to 5.75 5.01 to 5.88 -0.81 to 0.74
Day 2 Group A Mean (SD) 5.24 (0.5) 5.03 (0.19) 0.21 (0.42)
Median (Q1 to Q3) 5.13 (4.95 to 5.66) 5.03 (5.01 to 5.14) 0.4 (-0.08 to 0.52)
Min to Max 4.64 to 5.84 4.73to0 5.24 -0.37 t0 0.6
Group B Mean (SD) 5.08 (0.07) 4.97 (0.37) 0.11 (0.36)
Median (Q1 to Q3) 5.07 (5.05 to 5.07) 5 (4.86 to 5.24) 0.14 (-0.17 t0 0.2)
Min to Max 5t05.2 4.41t0 5.35 -0.28 to 0.64
Day 3 Group A Mean (SD) 4.9 (0.51) 4.88 (0.15) 0.03 (0.53)
Median (Q1 to Q3) 5.09 (4.45 to 5.16) 4.85 (4.79 to 4.99) 0.03 (-0.25 to 0.37)
Min to Max 4.3 to 5.52 4.7 to 5.06 -0.69 to 0.67
Group B Mean (SD) 5.06 (0.11) 4.81 (0.31) 0.25 (0.32)
Median (Q1 to Q3) 5.04 (5.01 to 5.05) 4.83 (4.66 to 4.93) 0.32 (0.14 to 0.39)
Min to Max 4.97 to 5.25 4410524 -0.23 to 0.64
Day 4 Group A Mean (SD) 4.94 (0.35) 4.76 (0.18) 0.17 (0.3)
Median (Q1 to Q3) 4.94 (4.8 to 5.22) 4.78 (4.62 to 4.89) 0.25 (-0.09 to 0.39)
Min to Max 44310 5.29 4.55 to 4.97 -0.19 to 0.51
Group B Mean (SD) 4.86 (0.06) 4.64 (0.27) 0.23 (0.29)
Median (Q1 to Q3) 4.85 (4.84 to 4.86) 4.58 (4.43 to 4.79) 0.38 (0.02 to 0.43)
Min to Max 4.81t0 4.96 4.37 to 5.02 -0.18 to 0.48
Day 5 Group A Mean (SD) 4.66 (0.33) 4.65 (0.21) 0.02 (0.22)
Median (Q1 to Q3) 4.59 (4.44 to 4.87) 4.6 (4.47 to 4.77) -0.07 (-0.16 to 0.12)
Min to Max 4.29t0 5.12 4.45 to 4.94 -0.16 t0 0.35
Group B Mean (SD) 4.39 (1.06) 4.44 (0.44) -0.05 (1.42)
Median (Q1 to Q3) 4.87 (4.76 to 4.89) 4.56 (4.08 to 4.57) 0.37 (0.32 to 0.68)
Min to Max 24910 4.93 3.95to 5.05 -2.56 to 0.92
Day 6 Group A Mean (SD) 4.48 (1.3) 4.61 (0.15) -0.14 (1.35)
Median (Q1 to Q3) 4.86 (4.66 to 5.32) 4.57 (4.54 to 4.73) 0.44 (0.12 to 0.52)
Min to Max 2.21105.33 442t04.8 -2.52 t0 0.76
Group B Mean (SD) 4.82 (0.13) 4.41 (0.31) 0.42 (0.31)
Median (Q1 to Q3) 4.77 (4.72 to 4.9) 4.33 (4.16 to 4.63) 0.56 (0.08 to 0.68)
Min to Max 4.71 to 5.01 4.09 to 4.82 0.08 to 0.68
Day 7 Group A Mean (SD) 4.31 (1.19) 4.45 (0.3) -0.15 (1.04)
Median (Q1 to Q3) 4.8 (4.36 to 4.98) 4.45 (4.21 to 4.49) 0.22 (-0.13 to 0.53)
Min to Max 2.24t05.15 4.18 to 4.93 -1.94 to 0.59
Group B Mean (SD) 4.61 (0.12) 4.33 (0.24) 0.28 (0.29)
Median (Q1 to Q3) 4.66 (4.48 to 4.71) 4.41 (4.13 to 4.46) 0.3 (0.2 to 0.35)
Min to Max 4481t04.72 4.05to0 4.62 -0.14 to 0.67

Supplementary Table S4

Descriptive statistics of the maximum diameter. Mean diameter and standard deviation (SD) as well as
median, quantiles, minima and maxima in mm for application days 1-7, separated for dose group A

(low-dose group) and group B (high-dose group).
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Supplementary Table S5. Time course of the minimum wound diameter for both dose groups

Day Group Statistic Verum Placebo Difference
Dav 1 Group A Mean (SD) 4.31 (0.3) 4.28 (0.41) 0.03 (0.43)
Median (Q1 to Q3) 4.26 (4.25 to 4.5) 4.47 (4.13 to 4.51) -0.01 (-0.01 to 0.12)
Min to Max 3.88 to 4.66 3.63 to 4.67 -0.59 to 0.63
Group B Mean (SD) 4.6 (0.11) 4.67 (0.24) -0.07 (0.27)
Median (Q1 to Q3) 4.56 (4.55 to 4.69) 4.69 (4.54 to 4.78) 0 (-0.04 to 0.01)
Min to Max 4.47 to 4.74 4.36 to 4.99 -0.52t0 0.2
Day 2 Group A Mean (SD) 4.29 (0.62) 4.28 (0.09) 0.01 (0.57)
Median (Q1 to Q3) 4.07 (3.82 to 4.66) 4.33 (4.27 to 4.33) -0.2 (-0.41 to 0.31)
Min to Max 3.721t0 5.19 41310 4.35 -0.51 t0 0.86
Group B Mean (SD) 4.38 (0.16) 4.04 (0.4) 0.34 (0.49)
Median (Q1 to Q3) 4.48 (4.25 to 4.49) 4.01 (3.77 to 4.25) 0.48 (0.27 to 0.48)
Min to Max 4.18 to 4.52 3.58 to 4.61 -0.43t0 0.9
Day 3 Group A Mean (SD) 4.04 (0.56) 4.21 (0.22) -0.18 (0.4)
Median (Q1 to Q3) 3.86 (3.54 to 4.62) 4.32 (4.13 to 4.37) -0.32 (-0.46 to 0.23)
Min to Max 3.53t04.64 3.86 to 4.39 -0.6 to 0.27
Group B Mean (SD) 4.21 (0.22) 4.08 (0.39) 0.13 (0.45)
Median (Q1 to Q3) 4.24 (4.2 to 4.31) 3.82 (3.79 to 4.33) 0.02 (-0.09 to 0.52)
Min to Max 3.84t04.44 3.79 to 4.65 -0.45 to 0.65
Day 4 Group A Mean (SD) 4.03 (0.59) 4.09 (0.29) -0.06 (0.38)
Median (Q1 to Q3) 3.88 (3.82 to 4.59) 4.15 (3.83 to 4.19) 0.05 (-0.33 to 0.14)
Min to Max 3.22t04.63 3.78 t0 4.49 -0.56 to 0.4
Group B Mean (SD) 417 (0.3) 3.98 (0.34) 0.19 (0.45)
Median (Q1 to Q3) 4.2 (4.11 to 4.34) 3.8 (3.8t04) 0.4 (-0.1 to 0.48)
Min to Max 3.71t04.48 3.72 to 4.56 -0.45 to 0.62
Day 5 Group A Mean (SD) 3.85 (0.42) 4.01 (0.25) -0.16 (0.39)
Median (Q1 to Q3) 3.6 (3.57 to 4.27) 3.86 (3.86 to 4.1) -0.27 (-0.4 to -0.14)
Min to Max 3.46 t0 4.35 3.84 to 4.41 -0.5to0 0.49
Group B Mean (SD) 3.69 (0.93) 3.69 (0.38) 0 (1.31)
Median (Q1 to Q3) 3.99 (3.66 to 4.34) 3.6 (3.47 to 3.66) 0.33 (0.06 to 0.89)
Min to Max 2.1t04.36 3.37 t0 4.33 -2.23 to 0.97
Day 6 Group A Mean (SD) 3.44 (1.02) 3.95 (0.16) -0.52 (1.01)
Median (Q1 to Q3) 3.4 (3.35 to 4.14) 4.03 (3.91 to 4.04) -0.35 (-0.51 to 0.05)
Min to Max 1.82 to 4.47 3.7 to 4.09 -2.21t0 0.43
Group B Mean (SD) 3.93 (0.24) 3.69 (0.42) 0.24 (0.53)
Median (Q1 to Q3) 3.99 (3.81 to 4.07) 3.66 (3.34 to 3.71) 0.15 (-0.13 t0 0.73)
Min to Max 3.58 t0 4.18 3.34 10 4.38 -0.39to 0.84
Day 7 Group A Mean (SD) 3.41 (1.06) 3.89 (0.42) -0.47 (0.84)
Median (Q1 to Q3) 3.62 (3.3 to 3.96) 3.95 (3.65 to 3.96) -0.07 (-0.33 to 0)
Min to Max 1.69to 4.5 3.37to 4.5 -1.96to 0
Group B Mean (SD) 3.91 (0.34) 3.62 (0.35) 0.29 (0.61)
Median (Q1 to Q3) 3.94 (3.65 to 4.2) 3.52 (3.48 to 3.61) 0.33 (-0.03 to 0.72)
Min to Max 34910 4.27 3.29t0 4.22 -0.57 to 0.98

Supplementary Table S5

Descriptive statistics of the minimum diameter. Mean diameter and standard deviation (SD) as well as
median, quantiles, minima and maxima in mm for application days 1-7, separated for dose group A

(low-dose group) and group B (high-dose group).
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Supplementary Table S6. Time course of the wound area for both dose groups

Day Group Statistic Verum Placebo Difference
Dav 1 Group A Mean (SD) 16.88 (2.15) 16.64 (1.09) 0.25 (1.87)
Median (Q1 to Q3) 16.32 (16.19 to 17.69) 16.8 (16.16 to 17.6) 0.09 (0.03 to 1.31)
Min to Max 14.2 to 20.02 15.01 to 17.62 -26t024
Group B Mean (SD) 18.5 (1.11) 19.01 (1.78) -0.51 (2.36)
Median (Q1 to Q3) 18.55 (17.61 to 18.56) 18 (17.89 to 20.93) 0.32 (-2.38 to 0.56)
Min to Max 17.52 to 20.28 17.29 to 20.96 -3.44 to 2.39
Day 2 Group A Mean (SD) 16.51 (3.8) 16.36 (1) 0.15 (3.34)
Median (Q1 to Q3) 14.32 (13.84 to 18.93) 16.44 (16.27 to 16.72) -0.49 (-2.6 to 2.66)
Min to Max 13.45 t0 22.03 14.81 to 17.56 -3.27 to 4.47
Group B Mean (SD) 16.48 (0.94) 15.05 (2.48) 1.43 (2.71)
Median (Q1 to Q3) 15.89 (15.79 to 17.48) 14.04 (13.62 to 16.07) 1.85 (1.41 to 3.07)
Min to Max 15.71 t0 17.53 12.64 to 18.88 -3.09 to 3.91
Day 3 Group A Mean (SD) 14.71 (3.13) 15.54 (0.93) -0.83 (2.65)
Median (Q1 to Q3) 13.71 (12.52 to 17.97) 15.53 (14.85 to 16.04) -1.14 (-3.17 to 1.16)
Min to Max 11.32 to 18.05 14.49 to 16.81 -3.52 to 2.52
Group B Mean (SD) 15.74 (1.32) 14.33 (2.15) 1.41 (2.47)
Median (Q1 to Q3) 16.19 (15.82 to 16.59) 13.58 (13.53 to 14.56) 2.03 (-0.13 to 3.1)
Min to Max 13.45 t0 16.63 12.13t0 17.84 -2.02 to 4.06
Day 4 Group A Mean (SD) 15.14 (3.11) 14.41 (1.67) 0.73 (2.54)
Median (Q1 to Q3) 13.09 (13.06 to 18.22) 13.88 (13.82 to 14.3) -0.31 (-0.79 to 0.98)
Min to Max 12.5t0 18.85 12.81t0 17.24 -1.24 to0 5.03
Group B Mean (SD) 15.1 (0.98) 13.95(2) 1.15 (2.2)
Median (Q1 to Q3) 15.4 (15.02 to 15.47) 13.13 (12.78 to 13.61) 1.79 (0.75 to 2.69)
Min to Max 13.5to0 16.11 12.75 to 17.48 -2.46 to 2.98
Day 5 Group A Mean (SD) 13.51 (2.55) 13.76 (1.45) -0.25 (2)
Median (Q1 to Q3) 12.19 (11.95 to 15.54) 13.23 (13.04 to 13.76) -0.69 (-1.28 to -0.35)
Min to Max 10.97 to 16.88 12.54 to 16.23 -2.07 to 3.12
Group B Mean (SD) 14.69 (1.5) 12.68 (2.61) 2.01 (2.77)
Median (Q1 to Q3) 15.04 (14.26 to 15.92) 11.99 (11.51 to 12.63) 2.75 (-0.32 to 3.05)
Min to Max 12.31 to 15.92 10.2 to 17.06 -1.14 to0 5.72
Day 6 Group A Mean (SD) 13.95 (2.89) 13.21 (1.19) 0.74 (2.09)
Median (Q1 to Q3) 12.22 (11.85 to 16.67) 13.1 (12.87 to 13.35) 0.13 (-0.65 to 2.48)
Min to Max 11.5t0 17.5 11.72 to 15.02 -1.6 to 3.32
Group B Mean (SD) 14.05 (1.5) 12.33 (2.33) 1.72 (3.02)
Median (Q1 to Q3) 14.12 (13.29 to 14.18) 11.9 (11.2 to 12) 2.09 (0.29 to 2.22)
Min to Max 12.29 to 16.36 10.25t0 16.3 -2.12 t0 6.11
Day 7 Group A Mean (SD) 13.12 (2.8) 12.98 (2.5) 0.14 (1.58)
Median (Q1 to Q3) 12.11 (11.97 to 14.28) 12.96 (11.82 to 13.03) 0.37 (-0.99 to 1.25)
Min to Max 9.94 t0 17.3 10.15 to 16.93 -1.88 to 1.96
Group B Mean (SD) 12.94 (1.62) 12.02 (1.66) 0.92 (2.98)
Median (Q1 to Q3) 12.58 (12.1 to 13.97) 11.55 (11.08 to 12.51) 1.5 (-1.57 to 2.42)
Min to Max 10.94 to 15.1 10.32 to 14.63 -2.53 t0 4.78

Supplementary Table S6

Descriptive statistics of the wound area in mm?2. Mean area and standard deviation (SD) as well as
median, quantiles, minima and maxima in mm? for application days 1-7, separated for dose group A
(low-dose group) and group B (high-dose group).
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Supplementary Methods

Supplementary Fig. S1

Depiction of the pacer (CASTEL-COP-DIGI, CASTEL-L, Novoflex, Germany) with the camera, in a
re-enactment. The distance between the camera lens and the skin amounts to a constant 9,5cm.

Immunohistochemical staining

The specimen taken at day 1 before initiation of therapy depicts a baseline value. A punch
biopsy was performed on day 1 (4mm) and day 7 (6mm).The tissue specimens were gathered,
by the same surgeon. The depth of the biopsy was defined by the depth of the metal blade
(7mm), as the granulation tissue has formed a depth of 7mm was enough to acquire the wound
in its entirety on day 7. The tissue specimens were cut in half and one part was prepared for
cryosection and the second part for paraffin-embedding. The samples were put into a sterile
plastic tube and immediately frozen (for cryosection) or kept in formaldehyde 7.5% for 24
hours. After 24h, sections were prepared for paraffin embedding, by standardized protocols of
the Department of Dermatology (Medical University of Vienna). Immunohistochemical
staining was performed according to the manufacturer’s protocol using the Avidin Biotin
Peroxidase complex technique. CD45 (ab10558, Abcam, Cambridge, UK; dilution: 1:100) was
stained on frozen sections and keratin 10 (PRB-159P, Covance Research Products Inc., Denver,
PA, USA; dilution: 1:1000), factor VIII (A0082, DAKO, Santa Clara, CA, USA; dilution:
1:1000), and podoplanin (clone: D2-40; 322M-15; Cell Marque Corporation, Rocklin, CA,
USA; dilution: 1:50) were stained on formalin-fixed, paraffin-embedded sections. In brief,
frozen tissue was embedded in OCT prior to sectioning and stored at -80°C. Tissue specimens
were cut into sections 6—8 pm thick and fixed using 4% paraformaldehyde. Formalin-fixed,
paraffin-embedded tissue specimens were cut into sections 4—6 um thick and deparaffinized.
The following steps were conducted on frozen as well as formalin-fixed, paraffin-embedded
sections. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6.0.
Endogenous peroxidase activity was quenched with 0.3% hydrogen peroxide. Sections were
incubated with the appropriate primary antibody overnight at 4°C, followed by incubation with
either anti-IgG mouse or anti-IgG rabbit secondary antibody (RPN1001V, Chalfont St. Giles,
GB; BA-1000, Vector Laboratories, Burlingame, CA, USA) diluted in 10% sheep or goat
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normal serum (sc-2488, Santa Cruz Biotechnology Inc., Dallas, TX, USA; X0907, DAKO,
Santa Clara, CA, USA) for 30 min at room temperature. Slides were then incubated with ABC
reagent (PK 4000, Vector Laboratories, Burlingame, CA, USA) for 30 min at room temperature.
The reaction was visualized with AEC substrate (K3469, DAKO, Santa Clara, CA, USA) under
the microscope and counterstained with hematoxylin (1.09253.500, Merck, Darmstadt,
Germany). As negative controls, the primary antibody was omitted. Additionally, on formalin-
fixed, paraffin-embedded sections, hematoxylin—eosin staining was performed according to a
standard protocol.

Digital scanning of tissue sections was performed using an automated scanning microscope,
TissueFAXs (TissueGnostics, Vienna, Austria). Tissue sections were rated by a blinded
observer. Tissue sections from day 7 were divided into transition, wound, and healthy zones.
The number of factor VIII-positive or podoplanin-positive vessels per cm? (MVD) was counted
at a magnification level of 20x. The effect of MVD by APOSEC low dose, APOSEC high dose,
or placebo was evaluated at day 7 in wound area (as fold increase to day 1). The number of
CD45" cells per high power field was counted at a magnification level of 20x in wound area
(as fold increase to day 1) and the percentage of CD45" cells was calculated.

Factor VIII APOSEC low dose vs. placebo (median fold increase [range]) (0.67 [0.20; 0.93] vs.
1.24 10.09; 3.33], p=0.44), Factor VIII APOSEC high dose vs. placebo (median [range]) (1.01
[0.33; 1.48] vs. 0.84 [0.17; 1.49, p=0.63). No podoplanin vessels were found in the tissue
specimens. No K10 positive epidermal layer in the wound area was found in any patient at day
7.CD45 APOSEC low dose vs. placebo (median fold increase [range]) (4.03 [1.15; 8.92] vs.
2.0910.77; 3.87], p=0.38), CD45 APOSEC high dose vs. placebo (median [range]) (1.58 [0.44;
2.72] vs. 1.48 [0.21; 2.00, p=0.48)
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10 CHAPTER THREE: Discussion

Chronic non healing ulcers depict a field of unmet need, as these complex mechanisms are a
multitude of processes concerning a successful wound healing.” To gain an insight on the
effect of irradiated PBMC secretome on wound healing, a lot of mechanisms of wound healing

must be taken into consideration.

This thesis aimed to elucidate 1) the role of regulated cell death on wound healing. 2) the role
of various cell types of the immune system on wound healing and angiogenesis and 3) if the
application of the irradiated PBMC-secretome is safe in human application. To conclude our

findings and compare them to the known literature is the goal of this discussion.

Apoptosis is known as orchestrated cell suicide, with the least destructive effect on surrounding
cells, due to the blebbing of cell fragments without the rupture of the cell membrane and efflux
of possible harmful cell compartments.?®® To fully understand the importance of controlled cell

death, one should have a look on the processes of uncontrolled cell migration and activation:

If we take a deeper look on the inflammatory processes in wound healing, starting for example
with neutrophils, that invade the wound area first. We will observe, that they produce pro-
inflammatory cytokines such as TNF-a and IL-1, which lead to enhanced activation of the
immune system.?%2% |f this process is out of control, the release of this cytokines result in a
stress response, which is characterized by increased catecholamines and corticosteroids as
in severe infections.?®® This stress response is believed to play a role in e.g. acute respiratory
distress syndrome/Sepsis, as activated neutrophils emigrate in the blood stream, reach the
lungs and damage endothelial cells of the lung tissue and consequently the alveoli either.?%
Apoptosis on the other hand is necessary to regulate and break the circle of more and more
activated and harmful neutrophils, which then are often eliminated by phagocytosis of

macrophages.2%8.2%

In later stages of wound healing the amount of collagen is crucial to gain physiological wound
healing, if collagen production is exaggerated, due to an imbalance of fibroblast apoptosis,

hypertrophic scars and keloid formation are the results.2%8-3%
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When we have a look on a second important cell death: necroptosis, only a few studies are

found to address this subject in wound healing.

Necroptosis seems to be profusely present in chronic wounds.*! Surprisingly the literature
depicts contradictory effects of necroptosis on wound healing. When it comes to wound

healing, one question remains unanswered: programmed cell death friend or foe?

One study observed, that necroptosis inflicted more oxidative stress on wounds via Silencing
information regulator 2 related enzyme 3 (SIRT3) and even prolonged wound healing in

diabetic mice.302:303

As increased RIPK3 was found in excised hypertrophic murine and human scar tissue, Izumov
et al believed, that fibroblasts were responsible for the higher RIPK3 levels.3** After stimulation
of wound fibroblasts with Lipopolysaccharide (LPS) and TGF- higher fluorescence was seen
in an RIPK3-antibody fluorescence staining, compared to non-stimulated control fibroblasts.3%*
Yet when isolating the cells and analyzing the gene expression level of RIPK3 via rtPCR, no
difference between the control fibroblasts and wound fibroblasts could be detected.?** He
speculated, that an epithelial-mesenchymal crosstalk between cells is necessary for fibroblasts
to upregulate the expression of RIPK3.3% He also considered, that RIPK3 may not have a role

in hypertrophic scar formation and that RIPK3 may have another function in wound repair.3%

Injarabian et al found interesting results regarding the role of necroptosis in wound healing.
She observed, that the number of monocytes and macrophages decreased, when the wound
matured from the inflammatory phase into the proliferatory phase.*% Especially Ly6C"" drive
inflammation and angiogenesis, both processes necessary for successful wound healing, but
hyperergic and long lasting monocyte and macrophage acitivity may hinder wound closure in
later phases.’®® She suspected that the regulation to lower numbers of
monocytes/macrophages was done with the induction of apoptosis and necroptosis.?® To test
this hypothesis the authors created a Ripk3™~ mouse, which also lacks FADD, but only in
monocytes and macrophages (Fadd" Ripk3"Cx3cr1¢e"!) 305 |n this model monocytes and
macrophages were not capable to undergo extrinsic apoptosis and necroptosis.3*® Excisional
wounds were applied on these mice and controls, leading to higher numbers of monocytes and
macrophages in the later phases of wound healing, proving that necroptosis is a major
regulator of monocyte numbers.3% Furthermore the wound closure was significantly delayed
without necroptosis and apoptosis in monocytes.** The granulation tissue was less on day 7
either, indicating decreased tissue remodeling in the presence of more monocytes and
macrophages.®*® Moreover excessive levels of TNF were found in the wound area of the
double mutant mice.3® As the group suspected the TNF pathway responsible for this effect,

they used a TNFR2-Inhibitor (Etanercept), which lead to normalization of wound healing.3%
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Leading to the conclusion, that a dysfunctional TNF receptor signaling leads to the decreased
wound healing.3% Pure Ripk3~~knock-out mice showed a similar wound healing, as the control

mice.3%

This study shows, that different cell death mechanisms are important for regulating the
adequate regeneration process. In this thesis we investigated, which cells are prone to
necroptosis and apoptosis, after stimulation with y-irradiation.?®” PBMC as co-culture were
least sensitive to the irradiation, displaying the highest number of living cells, compared to the
natural killer cells, mostly showing necroptotic cell death.?®” In monocytes we could find the
most balanced proportion of apoptosis and necroptosis.?®” These findings hint different

pathways activated and the possibility of various individual receptors involved.

Moreover we were able to show, that necroptosis is mediated via the TNFRSF 1B receptor after
irradiation.?®” Whereas in wound healing an abundant amount of TNF-a activates TNF-receptor
1, which which leads to activation of NF-kB, after recruiting TRADD, TRAF2/5 and among
others RIPK1. 3% The TNF pathway is especially interesting regarding its role in wound healing.
As a computational analysis done by Luthfiana et al. revealed a possible role in diabetic wound
healing of Dolastatin 16 mediated via the TNF/ NF-kB pathway.3%® As upon activation of NF-
kB the production of MMP-9 is upregulated, disturbing the reorganization of tissue architecture,

whereas Dolastatin 16 could act as inhibitor of MMP-9.

What surprised us, was that in our reporter gene assays the promoter activity of NF-kB was
highest after application of irradiated PBMC supernatant.?®” The stimulation with the apotptotic
and necroptotic monocyte supernatant could not reach the same impact.?*” This implicates
cellular cross-talk between different cell populations, necessary to fully activate the NF-kB
pathway.?®” The consequence of this finding for wound healing needs to be addressed in
further studies.?®” Could this also play a role in the increased angiogenesis in the sprouting
assays, which was highest after treatment with the PBMC supernatant, compared to those of

pure monocyte cultures.?%”

Furthermore the type of cell death mattered for the angiogenesis.?®” As we have showed by
blocking necroptosis and apoptosis by addition of necrostatin-1 and zVAD.2%" After irradiation,
the cells were cultured with the blocking agents for 24 hours and then the supernatant was
used for stimulation of endothelial cells and aortic rings.?*” Only the addition of necrostatin-1,
which blocks necroptosis induction, significantly decreased the sprouting ability and the tube
formation of endothelial cells.?®” Intriguingly the fresh addition of necrostatin-1 into the
sprouting assays and endotheial cell cultures, did not show differences on their angiogenic

potential.?®” Maybe the positive effects on angiogenesis are not the cells undergoing
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programmed cell death, but the factors, that are secreted by them. So, the key to understand

the effects of cell death may lie in the secreted factors of necroptotic cell death.

The role of apoptosis in wound healing seemed to be limited to the eradication of damaged
cells in the wounded area, to prevent exaggerated inflammation.?%®3%” Yet more and more

studies find a paracrine effect of dying cells on the surrounding tissue.

As dermal wound areas usually consist of a certain amount of dying cells, researchers are
becoming more and more aware of this neglected, yet important cells and their paracrine
effect.3%83%° The secreted factors of dying, apototic cells affecting surrounding cells were
labeled “metabolite secretome” by Medina et al.>*® A further look on the impact of apoptotic
cells took Li et al.3'® He used irradiated mouse embryonic fibroblasts (MEF) to simulate dying
cells from wounded dermal tissue and observed their proliferative effect on firefly luciferase
labeled neighboring cells.?'° He then elucidated growth-promoting and proliferative effects on
MSCs, epidermal keratinocyte progenitor cells and even neural stem cells.?'® He assumed
caspase 3 and caspase 7 as possible inducers of this positive effects and tested his hypothesis
with single and double caspase deficient mice.'° He irradiated the caspase deficient MEFs
and co-cultured them with wildtype fibroblasts, resulting in less cell proliferation, which was
aggravated in the caspase 3 and 7 double deficient co-cultures.®'® As a further step in vivo
angiogenesis assays were proceeded in caspase 3 knock-out mice and wildtype mice and
astonishingly vascular growth in the knock out mice did not differ from the negative control and
therefore displayed poor angiogenic potential.3'® Furthermore wound closure was finished by

day 9 in wild type mice, whereas in caspase 3 knock-out mice required nearly 14 days.3'°

It may be possible, that apoptosis and we speculate also necroptosis is hecessary in chronic
non healing wounds, to improve angiogenesis.?®” In dysfunctional tissue repair a lack of

vascularization is a main problem.?%

A myriad of cytokines and growth factors have a major effect on the accomplishment of wound
healing.” These cytokines are responsible for wound cleansing and chemoattracting and are
secreted not only by inflammatory cells, but also fibroblasts.” Fibroblasts also produce growth
factors, which gained attention in the scientific field to enhance wound healing.” Many single

growth factors were used as therapeutic options to ameliorate wound closure.”

Moreover chronic non healing wounds lack various different proteins, among them: EGF, TGF-
B, FGF, PDGF, VEGF, IL-1 and -6, and TNF-a.?® This fact in mind leads us to the idea that in
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such a deranged and deregulated system, the substitution of only one factor may never be

enough.

Compromised angiogenesis is a crucial pathomechanism in diabetic non healing ulcers.®3!"
One key player in neovascularization is the family of vascular endothelial growth factors
(VEGFs)."® Secretomes of mesenchymal stem cells and gingival fibroblasts had higher levels
of VEGF and applied on wounds led to accelerated wound healing.®®'% So one could argue,
that it would be enough to substitute VEGF to a nonhealing wound. However, Li et al could
show, that application of mesenchymal stem cell secretome on a damaged dermal defect,
could boost the target cells’ own VEGF production, which may account to the regenerative

potential.3'?

Pro-angiogenic signals are not only determined by cytokines, also intracellular pathways are
essential regulatory factors.'33'* The phosphatidylinositol 3-kinase(PI3K)/AKT/ mammalian
target of rapamycin (mTOR) pathway can increase VEGF secretion after activation.®'* VEGF
itself can again activate intracellular PI3K pathway in endothelial cells regulating cell

migration 33

When analyzing the protein signature of the secretome of irradiated PBMC, we could find the
only significant amount of VEGF in the supernatant of irradiated PBMC.?°" Lower levels of
secreted VEGF could be seen in the mono-cultures of monocytes, but in all other PBMC

subsets we could not detect relevant amounts of VEGF in the used proteome profiler.2%’

Multiple studies of our working group could measure upregulation of not only pro-angiogenic
factors such as VEGF type A, CXCL1 and CXCLS8, but also PDGF, FGF, MMP-9 and TIMP in
the secretome of irradiated PBMCs. 576263315 These factors are important for collagen and
extracellular matrix remodeling and wound healing.5” 6263315 So maybe the secretome could

improve collagen reconstruction by keratinocytes and fibroblasts activation in wounds.576263315

Regarding the protein secretion pattern of the different PBMC subsets, one protein was
especially interesting, as it was present in the supernatant of all subsets: IL-8.2°” We noticed
the highest amounts produced by PBMC and monocytes, and the least in B-cells.?®” This may

also contribute to the pro-angiogenic effects we monitored.?*”

As previously mentioned concerning angiogenesis in aortic ring assays, as well as VEGF
production, our work made it more and more clear, that monocytes are a very important cell
subset.?” But when compared to the PBMC secretome the angiogenic potential, as well as the
secretion of pro-angiogenic potential succeeded the combination of all mono-cultures.?®”
Which may indicate a cross-talk between the different types of immune cells and delicate

regulation, concerning the wound environment.?%”
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It can also be speculated that the activation of the immune system has a major influence on
the orchestration of wound healing as already described by Polly Matzinger.3'® The immune
system is not only in charge of self-defense against foreign bacteria or viruses.®'® As previously
discussed every wound needs an inflammatory phase, with pro-inflammatory and pro-
angiogenic cytokines, yet the sole addition of growth factors and other cytokines secreted by
immune cells, did not show any beneficiary effect.?1219282% Thjs gives us a hint, that cytokine
production in PBMC is a much more complex process and can be affected especially by the
presence and secretion pattern of other cell-subsets of PBMC.31219282% These cell-cell
interaction may lead to the necessary reprogramming of cells and therefore different secretion
pattern necessary for a functioning wound healing. It may be argued, that these so far not
further elucidated interactions may also be responsible for the effect we have seen in our ex-
vivo angiogenesis assays.?®” The observed sprouting of new vessels was mostly increased
upon stimulation with the secretome of a co-culture of all PBMC-subsets, compared to mono-

cultures of its cell subtypes.?*’

As PBMCs are a composition of different cell subsets, it is necessary to have a closer look on

the various subpopulations of the immune system and their effect on wound healing.

Laggner et al was able to demonstrate that treatment of dendritic cells with PBMC secretome
can suppress a hyperergic immune reaction of dendritic cells in a contact hypersensitivity
animal model.*” This effect is caused by induction of immuno suppressive pathways and
downregulation of antigen-presenting function of CD1a and CD11c" cells.®” Intriguingly the lipid

fraction of PBMC secretome was especially effective in restraining the MoDC effect. ¥

Copic et al. could show, that monocytes treated with PBMC secretome had higher upregulation
of Interleukin-1 beta, vascular endothelial growth factor A and C—X-C motif chemokine ligand
1,3 and 5 (CXCL-1, -3, -5) as well as SERPINB2 (which inhibits endopeptidase activity) in a
single cell analysis.'® This upregulated expression was confirmed on protein level.'® As a
next step the regenerative potential on endothelial cells was tested in vitro with the plasma
gathered from PBMC treated whole blood.' The pretreated plasma lead to higher neo-
angiogenesis in a tube formation assay. ' Therefore the upregulation of pro-angiogenic
genes, really is of biological importance and has an appropriate stimulatory effect on

endothelial cells. 1%

Mast cells are known for their essential role in allergic diseases, however more and more
knowledge is gathered concerning their role in angiogenesis, vasodilation, skin barrier
homeostasis, influence on the adaptive and innate immune system, fibrosis, diabetes and
wound healing.>'"3'® Mast cells can be found in nearly every tissue and in proximity to

fibroblasts, epithelial cells, vessels of the vascular or lymphatic system and nerves.3?°
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Activation of mast cells is induced by Immunoglobulin E (IgE), which leads to degranulation
and emission of histamine, tryptase, chymase, also neuroactive serotonin.®?° Furthermore
mast cells are also a source of cytokine and chemokine secretion e.g. TNF, VEGF, IL-6, IL-8,
TGF-B,PDGF, CCL1-5 and CCL7-9, CCL11, -17 and -22 as well as IL-4.%'° Especially IL-4 is
interesting, as IL-4 and IL-13 usually produced by TH2 T-cells in turn are detrimental for the
B-cell class switch and IgE production.?'°*2° Moreover the secretion of pro-angiogenic factors,

especially VEGEF is of interest for wound healing and regenerative medicine.

Bot et al hypothesized, that in an ischemic environment increases activation of mast cells and
consequently neovascularization.*?' So they induced hind limb ischemia in mice and measured
a higher amount of activated mast cells in inguinal lymph nodes.*?' The collateral diameter and
number of CD31* cells in capillaries was higher in mice with activated mast cells, compared to
the controls.®'" As hypoxic conditions are also found in dermal wounds, that may be an

interesting field for future studies.”™

In obese patients with a low-grade chronic inflammation higher tryptase levels (commonly
found in mast cell granules) were found in the serum, giving a hint to increased degranulation

and activation in this patient cohort.3?

Egozi et al observed wound healing in a mast cell deficient mouse strain WBBG6F1/J-
KitW/KitW—v and recognized less neutrophil infiltration in the wounded area in the pro-
inflammatory phase.?* While T-cell and macrophage migration remained similar compared to
wildtype mice.>? The cytokine levels of TNF-a and macrophage inflammatory protein-2, a
common chemoattractant for neutrophils, resembled those of WT mice.*?®* A change in the
wound healing in the proliferative phase could not be detected in this study, emphasizing the

importance of mast cells in the very first inflammatory phase.3%

Weller et al used the same mast cell deficient mouse strain, but added mast cells in the first
six days after wounding and could reveal, that wound closure and the neutrophil recruitment
were normalized.®?* He could also demonstrate that H1-receptor antagonists or the absence
of TNF-a abates wound closure, an effect not seen under the influence of a H2-receptor

antagonist.3?*

The chymase released by activated mast cells also regulates proliferation of human skin
fibroblasts. 325 After addition of chymase, proliferation of fibroblasts was increased (measured
with MTT test) and higher expression levels of TGF-B1 were measured after six hours of

stimulation.3%

Of all PBMC subsets addressed in this thesis, the monocytes seemed to have the most

important role on angiogenesis, as the sprouting area of newly formed vessels from aortic ring
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assays was the widest.?®” Furthermore monocytes were capable of activating NF-kB in a
promotor assays.?%” Interestingly in the literature not the monocytes, but the macrophages are

mostly studied, regarding wound healing.

Macrophages derive from monocytes and develop into classical (CD14**16, M1
macrophages), intermediate- or non-calssical (CD14**16"*, M2) macrophages according to
their exposure to cytokines and microenvironment.??> The M1 subtypes are considered pro-
inflammatory as 3% they differentiate under lipopolysaccharide (LPS) and TNF-a stimulation
and secrete pro-inflammatory cytokines such as IL-12 and IL-23 and produce reactive oxygen
species (ROS).%2%%6 On the other hand the non-classical M2 macrophages show anti-
inflammatory and pro-healing effects on their environment by secretion growth factors such as
IGF (insulin-like growth factor) and TGF-B.22 M2 macrophages develop upon stimulation with
anti-inflammatory of IL-4 and IL-10 cytokines.?? Whereas in normal wound healing the M1 cells
are predominant within the first three days and are replaced with M2 until day seven, in diabetic
wounds this transition from M1 to M2 never takes place.®?® In diabetic mice the prevailing M1
dominance in the wound area leads to inadequate collagen formation, impaired wound closure
and compromised angiogenesis.??%” Thus the idea to promote the M2 macrophage
polarization in chronic wounds seems to be a promising target. 2> A hyperglycemic environment
as seen in diabetic mice and humans assists macrophage M1 polarization, by increased
expression of pro-inflammatory cytokines.®?® An interesting study could observe, that these M1
macrophages lead to more TNF-a expression, which impaired keratinocyte migration to the
wounded area.®?® Furthermore matrix-metalloproteinase 1 (MMP-1) expression levels were

decreased, another factor, that dampens keratinocyte migration.32

The hyperglycemic environment not only leads to higher differentiation of monocytes to M1
macrophages, but also initiates their activation by IL-6, TNF-a and IL-1B, one of 13 pro-
inflammatory cytokines found especially in settings with high glucose levels.3?° In turn activated
M1 macrophages themselves lead to further secretion of these three cytokines, enhancing a

vicious cycle.3?

IL-17 appears to have a major influence in the M1 macrophage polarization, as a IL-17 knock-
out in a murine model lead to shifting into M2 subpopoulation.3* Moreover diabetic mice
treated with anti-IL-23- or anti-IL-17 antibodies were found to have faster wound closure.3*
This accelerated wound healing 14 days after wound implication, correlated with the higher
amount of M2 macrophages.®*® So maybe IL-17 blockade may be useful in diabetic foot ulcers,
especially as already approved drugs are used in psoriasis arthritis. Yet further studies must
be proceeded in humans, especially as the systemic immunosuppressive effect of IL-17
inhibitors to bacteria and fungi exposed or even infected diabetic wounds may be

counterproductive.
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Wound infections and thus LPS exposure drive the M1 shift in diabetic wounds.®" A study
stimulated mesenchymal stem cells with LPS and added the exosomes of the supernatant to
a diabetic wound in mice.®¥? Surprisingly this resulted in increased M2 polarization and
accelerated wound healing.3* A finding that may suggest, that pro-inflammatory stimulation of
cells, leads to a change in their secretion pattern, towards anti-inflammatory regulation. The
above-mentioned study revealed, that the miRNA let-7b in exosomes may play a crucial role
in the M1-M2 shift via the TLR-4/ NF-kB/ STAT3/ AKT pathways.3*

These data depict the importance of the immune system for physiological wound healing and
strengthen that our findings are a promising area for future research projects.?'° Yet we have
to consider the destructive power of a mis leaded immune system on wound healing

either.310.332

Wu coined the idea that apoptosis of immune cells mark the turning point in wound healing
from the inflammatory phase into the proliferative phase.*%® Without the factors secreted by
these dying cells the damaged wound area would remain trapped in an ongoing inflammatory

phase.>® We may add the importance of necroptosis to that idea.

Last but not least, we were able to test the irradiated PBMC secretome (APOSEC) for safety
on human skin.333 As it is crucial and necessary for all drugs to undergo strict controls to prove,

that they do not inflict any harm on humans, phase | studies are of utmost importance.3

First step is to prove a drugs’ safe use are done with toxicological assays.3** Wuschko and
Gugerell et al. described this preclinical testing.®** Acute neuropharmacological adverse
events and toxicity was tested intravenously in a murine model, with negative results.®* In the
repeated intravenous toxicity tests over four weeks, no harm or death could be assessed in
the tested rodents.®* As the drug is planned to be used topically on wounds, also the
subcutaneous application was necessary to test, to verify safe use with direct contact to the
subcutaneous fat.®3* To verify non-toxicity in a non-rodent species, mini pigs were selected for
s.c. application.?** To observe topical effects, the local lymph node assay was chosen.3** All
animals were examined once a day for clinical signs of illness or changes in behaviour.33
Laboratory parameters, urine analysis and ophthalmological or auditory abnormalities were
checked and at the end of the intervention period histopathological examination was
performed. 3** No animal died after i.v. or s.c injections, proving non-toxicity of the tested doses
(max 500 U/kg).>** In the local lymph node test, no signs of intolerance were detected.®** These

results are building the foundation for all subsequent safety tests.33
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Furthermore, stability assays need to prove the safe storage and maintenance of efficacy of
future drug compounds.3* Lyophilization does the trick, to stabilize this biological agent and
makes it possible to store them in temperatures other, than -80°C, which would restrict the
broad use in a clinical setting.3**33% To test this steady quality, potency assays for batch
controls need to be designed.®” The potency assays developed for APOSEC are described in
the first paper of this thesis and are aiming NFkB, HSP-27 and AP-1.2°" Before verification of
the safe and stable quality, no clinical testing would be possible, especially in “biological’
therapies.3* With the use of different immune cells, which can show interindividual differences,
comparable quality and function is a major concern.®** To minimize this effect, several
secretomes from different donors are pooled.?3* The pooled product was tested with the
potency assays and depicted comparable results between batches.®” This was another

milestone before the use in humans was reasonable.

To conduct a Phase | or Il clinical study a lot of safety concerns need to be addressed in
advance.®® Viral transfection of blood products is a concern, that needs to be addressed.33¢
Gugerell et al. tested upfront different methods to diminish viral viability and titers with
lyophilization, treatment of methylene blue (activated with visible light) or the irradiation with
25kGy of ionizing irradiation of lyophilized APOSEC.3*® For this the effects on the human
immunodeficiency virus (HIV-1), Hepatitis A virus (HAV), pseudorabies virus (PRV) or porcine
parvovirus (PPV) were observed.?*® Methylene blue treatment served as standard of care for
viral inactivation, according to the world health organization (WHO).**” The supernatant of
PBMC was spiked with the mentioned viruses and treated with methylene blue (MB) and light,
lyophilization or y-irradiation with 25kGy after lyophilization.®*® After addition of MB the
enveloped viruses (HIV, PRV) and the bovine viral diarrhoea (BVD)-virus showed infectivity in
APOSEC as a result of successful viral inactivation.®¥” But the non-enveloped species such as
HAV and PPV displayed infectivity after MB treatment.33” Lyophilization resulted in significantly
reduced virus titers of BVDV and considerably less decrease in HAV and PRV.%¥ In all other
viruses no difference in number or activity could be detected after lyophilization.®” In a
combined approach of lyophilization and consecutive gamma irradiation, both the enveloped
viruses (PRV, HIV and BVDV), as well as the non-enveloped ones (HAV) were inactivated.’

Only the PPV could not be inactivated by the combined procedure.3%”

To further optimize the already very safe approach for viral infections, the testing of healthy
donors for viral infections should be implemented prior to blood donations.*** To accomplish
this goal the working group around Prof. Ankersmit started a cooperation with the Austrian Red
Cross Blood Transfusion Service for Upper Austria, Linz.3*® The PBMC were isolated from

tested and healthy blood donors fulfilling GMP criteria.333
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The secretome of PBMC can be manufactured in two manners. Either autologous, which
means, that the probands’ or patients’ own blood is obtained for PBMC isolation, or allogeneic
using PBMCs of blood donations.®3® The use of the patients own blood seems may decrease
the risk of having allergic reactions, yet we do know little about dysfunctional secretion

patterns, that may lead to decreased wound healing.333

An allogeneic approach may hold the probability to elicit immunological reactions.®® Thus, we
processed the PBMCs the same way as blood donations for immune compromised patients
are treated, with ionizing irradiation.®® Due to the irradiation possible graft versus host diseases
are very unlikely and the proliferation of T-cells inhibited.®® On the other hand, to this date it is
not fully elucidated, if the malfunctioning of autologous immune cells is one reason for
inadequate wound healing, therefore allogeneic PBMC secretome, may be necessary for

improving the body’s regenerative capacity.®®2’

Furthermore, possible alternatives have been considered for y-irradiation.®® Laggner et al
tested the effect on the secretome after electron-irradiation of PBMC, which showed similar
protein expression patterns, as well as comparable angiogenic capacity on tube formation
assays.”® As y-irradiation is available throughout the country as a standard procedure in blood
donations, the phase | study was designed to prove its safety.®® But it is a matter of special
importance to have the possibility to use other non-radioactive, biologically equivalent

manufacturing methods.*

We tested the safety of autologous APOSEC on intact human skin in healthy probands in a
double-blinded, randomized clinical phase | study.?*® The primary aim of the study was the

tolerability and safety on human skin and furthermore on a wounded area.333

According to the standard of care two doses of APOSEC were tested to identify dose
dependent adverse events or effects on the wound area.?®® The healthy probands were
randomized to the two dose groups or placebo and were observed in a double-blinded

manner.333

The probands had regular clinical check-ups, before and after treatment consisting of physical
examination, laboratory parameters were checked with an emphasis on blood count, kidney
and liver parameters, as well as inflammatory parameters (C reactive protein).*** Due to the
autologous approach, participants donated 450ml blood at the Red Cross Blood Transfusion
Service Center in Linz, where the processing was completed according to GMP guidelines.?3
The autologous, irradiated PBMC secretome or Placebo were applied on intact skin first, to
monitor allergic reactions or irritation of the skin.>* If no signs of allergic reactions could be
observed, we proceeded to test APOSEC on an artificial wound.33® After a punch biopsy was

done to generate a wound with the same dimension for every group, the treatment was
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applied.®*® No severe adverse events were seen, only mild reactions could be detected.*** No
clinically significant changes in the laboratory results were found in the healthy probands and
also in the follow-up visits no delayed reactions could be documented.3*® Participants were
asked for symptoms at every study visit.3*3 The applicability was tested either and showed

satisfactory results.33

This study was of great importance for the development of future study medications, as the
safe use is the corner stone for clinical use in patients.3** Furthermore if the autologous PBMC
secretome would have not been tolerated, no proceeding to the allogeneic product would have

been possible.33

Outlook

All these preliminary data pave the way for the clinical phase Il study of allogeneic APOSEC
in the treatment for chronic wound healing deficiency.®*® We hope that irradiated PBMC
secretome will lead to enhanced wound healing and help people to regain a higher quality of
life and reduce severe consequences of wound healing, such as loss of function or even

amputation _25,333,338,339

Moreover, PBMC are a waste product of blood donations usually discarded and therefore
easily to obtain, in contrast to stem cells.33* As PBMCs are obtained from healthy blood donors,
the risk of deregulated or deranged immune reaction is minimized.3* The irradiation of PBMC
is normally conducted to diminish immunological reactions in blood donations for immune
deficient patients (e.g., after transplantation), thus the irradiation of PBMC is an already tested
and safe procedure for cell products.®®3333% Another safety step is the controlled production,

according to good manufacturing principles (GMP) standards.3*

If the regenerative capacity of wound healing observed in the above-mentioned studies can be
shown in human chronic wounds, the origin of a possible new treatment option for patients
with unmet need would be created.5”:8%289.27 pPlanned is the topical application on chronic,
diabetic foot ulcers with standardized digital measurement software and the comparison of the
effect in a placebo and treatment group.3*° The test period will be several weeks to have the
opportunity to depict epithelialization.3*° Positive results may open the doors to the realm of

new treatment options for patients with chronic disease.34°

The clinical phase Il study (ClinicalTrials.gov Identifier: NCT04277598) "A Study to Evaluate
Safety and Efficacy of APO-2 at Three Different Doses in Patients with Diabetic Foot Ulcer"*

is the first trial to test allogeneic PBMC secretome of healthy donors on wound healing.3*° The
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allogeneic approach is more practical, than the isolation and processing of patient's own blood
samples.?*® Thus, it could be used as an off the shelf product in clinical practice.**° The longer
a skin barrier is open, the more infections may occur and therefore quick closure is also a
matter of systemic health.”2627:31.341 \Wound infections and sepsis are often a reason for
hospitalization and additional costs for the health system and in some cases a life-threatening
condition for the patient.”-26:27:31341 Another important factor is the development of antibiotic
resistance, which is increasing in the western world.343#4 All these aspects lead to the
conclusion, that the most important reason for wound closure is the fast restoration of our
largest protector against infections: the skin.”-26:27:31.341
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11 CHAPTER FOUR: Methods

11.1  Ethical and legal aspects

These two studied were conducted according to the current principles of the Ethics Committee
of the Medical University of Vienna as well as the Declaration of Helsinki and Good Clinical
Practice. The experiments and trials were approved by the Ethics Committee of the Medical
University of Vienna (EK Nr. 1285/2013 and EK-Nr 1539/2017) and the animal research Animal
Research Committee (Medical University of Vienna) (Protocol No. 190097/2015/9).
Furthermore the clinical study was notified at the EU clinical trial register (EudraCT-Number:
2013-000756-17; NCT02284360; AGES INS-480102-0013-007).

11.2 PBMC preparation and secretome production

The isolation of PBMC was conducted from heparinized whole-blood samples or from
leukocyte chambers after blood donation from healthy donors at the Department of Transfusion
Medicine or the Red Cross Blood Transfusion Service of Upper Austria. The samples were
diluted with Hanks™ balanced salt solution and max. 35ml layered over 15ml of Ficoll-Paque
PLUS (GE Healthcare Bio-Sciences AB, Sweden). By density gradient centrifugation (800g,
15min without brake) the PBMC were separated at the Buffy Coat between the plasma and
the Ficoll, segregated from erythrocytes and granulocytes at the bottom of the vessel. PBMC
were washed with phosphate-buffered saline (PBS-/-, Gibco by Life Technologies, Carlsbad,
CA, USA) and y-irradiated with 60 Gy for apoptosis and necroptosis induction and cultured at
a concentration of 25 Mio cells per ml in Cell Gro medium (Cellgenix, Freiburg, Germany) at
37°C for 24h. For dose dependent effects samples were irradiated with 0.9, 1.9, 3.75, 7.5, 15,
30, and 60 Gy. The inhibtors of apoptosis and necroptosis zVAD (20 uM) and Necrostatin-1
(100 uM) both from Sellekchem, Munich, Germany) or neutralizing antibodies against TNF
receptor superfamily 1A and 1B (both (R&D Systems, Minneapolis, MN, USA) at a
concentration of 1 pg/ml, were added immediately after irradiation and left in the wells for the
whole culture period. After the culture period the samples were centrifuged (400 x g, 9 min)
the pellet was used for protein analysis e.g. westerblotting and Lammli buffer (Bio-Rad,
Hercules, CA, USA) phosphatase and proteinase inhibitors (Thermo Fisher, Waltham, MA,
USA) were added or lyzed in Trizol (Invitrogen, Carlsbad, CA) for RNA isolation and frozen at

-80°C. The supernatant was used for stimulation and protein analysis and preserved at -20°C.

For further separation of the different cell subsets of the PBMC positive isolation with magnetic

microbeads (Miltenyi, Bergisch Gladbach, Germany) was used. For purification to a purity of
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93 to 99% microbeads against the epiptopes of CD14 (monocytes), CD19 (B cells), CD4 (CD4
T cells), CD8 (CD8 T cells) and CD56 (natural killer cells) were used. The incubation and
separation was conducted according to the manufacturer' s instruction. After isolation the cells
were treated as mentioned above, irradiated and all cultured in the same Cell Gro medium for
24h.

For production of PBMC secretome according to current GMP principles the laboratory of the
Austrian Red Cross Blood Transfusion Service for Upper Austria, Linz was gained as a partner

for the clinical phase 1 study.

11.3 Westernblot

The samples obtained from the PBMC separation were further analyzed by protein blottings.
For this purpose 30ug of protein of the cell lysate in Lammli buffer (Bio-Rad, Hercules, CA,
USA) with the above-mentioned proteinase and phosphatase inhibitors were pipetted on
ExcelGels (GE Healthcare). After protein separation according to their specific kDa transfer
onto nitrocellulose membranes (Bio-Rad) was done according to manufacturer' s protocol and
blocked. After incubation with one of the following antibodies for necroptosis detection
phospho-RIPK 1 at a concentration of 1:100 (Cell Signalling Technology, Cambridge, UK),
phospho-RIPK3 at a concentration of 1:200 (Abcam, Cambridge, UK) and phospho-MLKL at
a concentration of 1:500 (Cell Signalling Technology, Cambridge, UK) according to the
manufacturer' s protocol overnight under motion at an environment with 4°C. For apoptosis a
cleaved-caspase 3 antibody was used at a concentration of 0.5ug/ml (R&D Systems,
Minneapolis, MN, USA). Furthermore glyceraldehyde 3-phosphate dehydrogenase antibody at
a concentration of 1:2000 (Cell Signalling Technology, Cambridge, UK) and TNF antibody at
a concentration of 1 uyg/ml (R&D Systems, Minneapolis, MN, USA). For the blockade of the
TNF-antibody it was incubated for 4 hours ata concentration of 1ug vs 10 pg of recombinant
TNF ((R&D Systems, Minneapolis, MN, USA). After several washing steps the membrane was
incubated with a second step antibody at a concentration of 1:10,000 Bio-Rad, Hercules, CA,
USA) and afterwards with Supersignal West Dura (Thermo Fisher, Waltham, MA, USA). The
detection of the bands was achieved with the ChemiDoc System (Bio-Rad, Hercules, CA,
USA).

11.4 Scanning electron microscopy

Irradiated or untreated PBMC after 24h of culture were washed with PBS and fixated with a
Karnovsky' s fixative (Morphisto, Frankfurt am Main, Germany) consisting of glutaraldehyde
(2,5%), and paraformaldehyde (2%) in phosphate Buffer iwth a pH of 7,4. Afterwards the cells
were dried with hexamethyldisilazane (Sigma-Aldrich, Taufkirchen, Germany) and fixed via

gold sputter (ACE200, Leica Microsystems, Wetzlar, Germany). The evaluation and
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photography was done with a scanning electron microscop (JSM 6310, Jeol Ltd®, Japan) at

an acceleration voltage of 15kV.

11.5 Flow cytometry

The Annexin-V/PI staining for necroptosis and apoptosis imaging was accomplished with the
Annexin-V-FLUOS Staining Kit according to the manufacturer' s protocol (Roche, Basel,
Switzerland) and visualized via the Amnis Image Stream X Mk Il (Luminex Corp., Seattle, WA)

at the Core Facility of the Medical University of Vienna.

11.6 Protein assays

The supernatant obtained after cell culture were frozen at -20°C until further processing. The
protein concentrations of TNF-a and lymphotoxin-A (both R&D Systems, Minneapolis, MN,
USA) in the supernatant were determined with enzyme-linked immunosorbent assay (ELISA)
following the distributor's instructions. In short, the capture antibody was coatet on a 96-well
plate and incubated overnight. After washing and reduction of unspecific bindings with blocking
buffer the samples were added. Thereafter another washing step was conducted and the
detection antibody was pipetted into the wells. For identification horse radish peroxidase was
applied and after further washing steps the colouring reaction was started with 3,3',5,5'-
Tetramethylbenzidine (TMB) and stopped with 2% sulphuric acid and measured with a

photometric analyzer at a wavelength of 450nm (PerkinElmer, Boston, Massachusetts, USA).

For the protein detection of the secretome of the different PBMC subsets, apoptotic and
necroptotic (with or without inhibitors) after irradiation or untreated the samples were analyzed
with the Proteome Profiler XL Cytokine Array (R&D Systems, Minneapolis, MN, USA) strictly
applying to the manufacturer' s instructions. The detection of pro- and anti-apoptotic proteins
was measured with the Human Apoptosis Array (R&D Systems, Minneapolis, MN, USA) also
according to the manual, but in advance the cells itself were lyzed in the specific buffers. The
measurement and analysis was done with the ChemiDoc System (Bio-Rad, Hercules, CA,
USA).

11.7 Potency assays

The reporter gene assays as well as the potency assays were developed and realized by the
Synlab Pharma Institute AG (Bern, Switzerland), to determine the capability of the cell
secretome with regard to activation of HSP-27, NF-kB and the activator protein-1 (AP-1).
Therefore, human neuroblastoma SH-SY5Y cells were transfected with firefly luciferase, that
is activated by a promoter of AP-1in a mixture of Glutamax-Medium and Ham's F12/MEM
(Gibco, Thermo Fisher, Waltham, MA, USA) with 15% fetal bovine serum (FBS) and puromycin

(1 pg/ml) and L-glutamine (2 mM) (Sigma-Aldrich, St. Louis, MO, USA). 20.000 cells were
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exposed to the pooled secretome of four donors of monocytes, PBMCs or medium control and
the fluorescence signal after the addition of SteadyGlo (Promega, Fitchburg, WI, USA) was
analyzed. For the detection of the luminisience the signal was quantified with the EnVision
reader (Perkin-Elmer or Centro LB960, Berthold). A different procedure was used for the
activation of HSP-27 and NF-kB pathways. For that reason, the cells were incubated with the
secretome for 30 minutes and permeabilized. The permeabilized cells were exposed to
antibodies detecting phosphorylated HSP-27 and NF-kB and for luminescence reaction
peroxidase-conjugated antibodies similar to an ELISA. This luminescence reaction was
envisioned with the same reader mentioned above. The quantification was done with the PLA

software (Stegmann Systems GmbH, Rodgau, Germany).

11.8 Aortic ring assays

For testing of the pro-angiogenic effect of the PBMC supernatant ex-vivo aortic ring assays
were conducted. The aorta of male C57BL/6 mice was obtained after cervical dislocation and
sliced into 1mm thick rings. The protocol was slightly adapted from a previously published 233
experiment. The rings were embedded between two layers of fibrin, composed of 43.3 ug/ml
aprotinin, 0.6 U/ml thrombin (both from Sigma-Aldrich, St. Louis, MO, USA) and fibrinogen at
a concentration of 2 mg/ml (Merck Millipore, Burlington, MA, USA). After hardening the layers
and aortic rings were equilibrated in M199 medium supplemented with 4 mM L-glutamine, 10%
FBS and antibiotics and anti-mycotic substances (100 ug/ml streptomycin, 100 U penicillin and
250 ng/ml amphotericin B (all from Gibco, Thermo Fisher, Waltham, MA, USA except the FBS
(PAA Laboratories, Pasching, Austria)) for 45 minutes and spare medium was removed. M199
medium was diluted with the supernatant of apoptotic and necroptotic PBMC or their freshly
addded respective inhibitors (20 uM zVAD and 100 uM necrostatin-1) as controls as well as
with the secretome of the different irradiated PBMC subsets as previously described and
cultivated for 3 days. To evaluate the living sproutings after these 3 days of cultivation calcein
dye (Thermo Fisher, Waltham, MA, USA) was added according to the manufacturer's
description and photographed with the Olympus 1X83 scanning microscope (Olympus, Tokyo,
Japan). The quantification was conducted using the Imaged software version 1.48v (Wayne
Rasband, National Institutes of Health, Bethesda, MD, USA).

11.9 Tube formation assays

For the in vitro evaluation of angiogenesis, a tube formation assay was performed with primary
human umbilical vein endothelial cells (HUVECSs). For starvation purposes the cells were
incubated overnight (for 12h) at basal EBM-2 medium without growth factors (Lonza, Basel,
Switzerland) and 2% FBS followed by 3h basal EBM-2 without FBS. The tissue culture plates

provided by the tube formation kit from ibidi were layered with a matrigel matrix with decreased
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growth factors (Ibidi USA Inc., Fitchburg, WI, USA) following the manuals instructions. 1 x 10*
cells of the HUVECs were placed in each well and stimulated with the secretome of apoptotic
and necroptotic PBMCs at a final concentration of 4 x 10° cells/ml (same dilution as in the aortic
ring assays), medium and freshly added inhibitors served as control. After 3 hours of
stimulation period the results were photographed with the Olympus IX83 scanning microscope
(Olympus, Tokyo, Japan) and length and inteconnections of the tubes was calculated with the
Angiogenesis Analyzer Imaged plugin (Wayne Rasband, National Institutes of Health,
Bethesda, MD, USA).

11.10 Immunohistochemistry

After saoking in formaldehyde for 6 to 24h, according to the organ tissue, the samples were
embedded in paraffin by the Department of Dermatology. The staining process was conducted
apllying to the Avidin Biotin Peroxidase complex protocol.34 The antibodies used for detection
are the following: podoplanin 1:50 (clone: D2-40; 322M-15; Cell Marque Corporation, Rocklin,
CA, USA), keratin 10 1:1000 (PRB-159P, Covance Research Products Inc., Denver, PA, USA)
and factor VIII 1:1000 (A0082, DAKO, Santa Clara, CA, USA). The tissue samples were cut
into 4—6 um thick sections and pretreated to remove the paraffin. The specimens were treated
with citrate buffer (pH 0,6) and hydrogen peroxide (0,3%) and afterwards incubated with the
pimary antibodies overnight at 4°C. Washing steps were applied and the secondary antibody
added on the sections and incubated for 30 minutes, depending on the primary antibody either
rabbit or mouse (RPN1001V, Chalfont St. Giles, GB; BA-1000, Vector Laboratories,
Burlingame, CA, USA). To avoid unspecific binding the antibodies were diluted in sheep or
goat serum (10%, sc-2488, Santa Cruz Biotechnology Inc., Dallas, TX, USA; X0907, DAKO,
Santa Clara, CA, USA). After another washing step the previously mentioned ABC reagent
(PK 4000, Vector Laboratories, Burlingame, CA, USA) was kept on the samples for another
30 minutes. The colour reaction was implemented with AEC substrate (K3469, DAKO, Santa
Clara, CA, USA) and the tissue specimen stained with haematoxylin-eosin (1.09253.500,

Merck, Darmstadt, Germany).

Frozen sections were kept in OCT at -80°C and stained with CD45 1:100 (ab10558, Abcam,
Cambridge, UK). The stained slices were photographed by an automated microscope
TissueFAXs (TissueGnostics, Vienna, Austria) situated at the Core Facility (medical University

of Vienna).

11.11 RNA purification

The cell pellets of the irradiation or untreated PBMC and the PBMC subsets after 24h of
cultivation were lyzed in 500ul Trizol (Invitrogen, Carlsbad, CA) and preserved at -80°C. For

purification of the RNA 200pl chloroform was added to an adequate amount of lyzed sample
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and kept on ice for 5 minutes followed by centrifugation to separate the organic phase. The
aqueous phase containing the RNA was mixed with the same amount of propanol and
centrifuged followed by washing steps with 75% and 100% ethanol. The RNA containing pellet
was dried and resuspended in RNA-free H-O and the quality measured by the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), whereas the quantity was analyzed

via NanoDrop-1000 spectrophotometer (Peglab, Erlangen, Germany).

11.12 Microarray

The samples were analyzed with the Affymetrix Human Transcriptome Array 2.0 (Affymetrix,
Thermo Fisher Scientific Inc. Waltham, MA, USA) after RNA purification at the Genomics Core
Facility of the Medical University of Vienna applying to the MIAME®® principles. The data from
the microarray testing were analyzed using the Gene GeneSpring Version 15.0 software
(Agilent) after log2 transformation and quintile normalization. According to previously published
techniques the data was filtered to minimize the multiple hypotheses and to work mostly with
genes, with an expression level above the 60% percentile.’? To find statistically significant
differences in mMRNA expression a moderated paired t-test was calculated with a Benjamini-
Hochberg post-hoc test (FDR <5%) for genes with a fold-change <-2 and =2. Clustering of
MRNA expression was analyzed with Euclidean distance metric as well as average-linkage
clustering. According to current guidelines the results were published with the GEO Accession
number GSE127982 at the nchi website (the password can be found in the publication)
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127982.

11.13 Pathway analysis

For evaluation of the differences in the expression of biologically relevant genes three methods
were used: 1) for pathway analysis the Kyoto Encyclopedia of Genes and Genomes (KEGG),
2) for biological enrichment of processes Gene ontology-enrichment was calculated and 3)
categorization of the different genes according to biological function via WEB-based Gene Set
Analysis Toolkit (WebGestalt)®*7.34834° Post-hoc corrections were applied as described above
in the section microarray. Additionally activated canonical pathways were searched with the
help of Ingenuity Pathway Analysis (Qiagen, Hilden, Germany) for mRNA depicting a fold

change of >3 comparing freshly lyzed cells vs irradiated PBMC.

11.14 Statistical methods

Data obtained during these studies were analyzed via GraphPad Prism 5 (GraphPad Software
Inc., California, USA), R version 3.2.1 or SPSS (SPSS Inc., Chicago, USA). The values were
stated as mean it standard deviation (SD), minima and maxima if not stated otherwise.

Depending on the data distribution (Gaussian distribution) one-way analysis of variance or
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Kruskal-wallis test was used with its respective post-hoc analysis (Bonferroni or Dunn’s), as
well as two-tailed student's t test. The Gibbs outlier test was utilized to truncate discordant

values. P-values below 0.05 were considered statistically significant.
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American College of Rheumatology ACR/ARP Annual Meeting

2019, Atlanta, USA

Poster presentation

Important Role of CD11c+ Dendtritic Cells in Inflammatory
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Accelerated Waning of Protective Immunity after SARS-CoV-2
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2023/06 Rheumatology, Vienna, Austria
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2016/12
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2020/11

2022/11
2022/11

Research Scholarship — Christian Doppler Laboratory for Cardiac
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Medical-Scientific Fund of the Mayor of the Federal Capital
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ACR Scholarship of the OGR
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2023/10
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2022/10
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2020/02

2019/10-2020/02

2019/10-2020/02

2019/02

2019/03
2018/10-2019/02
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SSM1- Methods in Scientific work, Medical University of Vienna
Vasculitis, BL 21 Lecture, Medical University of Vienna
SSM1- Methods in Scientific work, Medical University of Vienna
Vasculitis, BL 21 Lecture, Medical University of Vienna

Rheumatology BL 27- Internal Medicine, elective seminar in
Rheumatology, Medical University of Vienna

Rheumatology BL 27- Internal Medicine, elective seminar in
Rheumatology, Medical University of Vienna

Journal Club - Current Topics in Applied Immunology, Medical
University of Vienna

Thesis Seminar- Applied Immunology and Tissue Regeneration,
Medical University of Vienna

BL 27- Internal Medicine, elective seminar in Rheumatology,
Medical University of Vienna

Clinical Physical Examination, Medical University of Vienna
Basic Life Support Course, Medical University of Vienna

Junior supervisor of the Diploma thesis of
Cand. med. Dragan Copic
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Cytokine secretion level of peripheral blood mononuclear cells
(PBMCs) after exposure to irradiated PBMC secretome
2016/02 - 2016/07
Tutor at the Medical University of Vienna,
University Clinic of medical Education and Training
OSCE exam preparation assistant for Surgical skills
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Tutor at the Medical University of Vienna,
University Clinic of Anaesthesia for Dyspnoea
2015/10-2016/02
Tutor at the Medical University of Vienna,
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Return Week exam assistant
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Tutor at the Medical University of Vienna,
University Clinic of medical Education and Training
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Tutor at the Medical University of Vienna,
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Since 2023 Reviewer for Frontiers in Medicine
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